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Abstract: Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After
biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mecha-
nisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent
need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on
the current biofilm-targeting strategies and those under development, including targeting persistent
cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are
supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting
technology that disrupts the biofilm and promotes practical application of antibacterial materials.
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1. Introduction

Biofilms are still considered as a major cause of chronic infections (such as chronic
periapical periodontitis, chronic lung infection, infective endocarditis, etc.) [1–5]. Addition-
ally, biofilms cause extensive damage to the marine environment and agriculture [6–10].
There has thus been considerable interest in the biofilm formation mechanism [11–17].
Accumulating evidence suggests that these bacterial resistance phenomena result from the
ability of bacteria to enter into a dormant or persistent state in the biofilm [18–23]. The
biofilm forms a complex microenvironment and spatial organization structure, such as
extreme internal environments and extracellular polymeric substances (EPS), which limit
entry of most drugs into the biofilm [24–30]. As such, understanding biofilm formation
processes and chronic infections that can benefit from changing treatment, and, thus, tailor-
ing personalized treatment to clinical patients, is paramount in improving the anti-biofilm
therapeutic efficacy. Nonetheless, clinical treatment protocols for biofilm infections have
not been updated accordingly.

The anti-biofilm strategy was still in an early stage of physical clearance and high-dose
continuous administration in early clinical studies [31,32]. At present, most biofilm removal
methods or treatment methods approved by the US Food and Drug Administration (FDA)
focus on retained medical devices [33]. Research has shown that killing bacteria does not
necessarily eradicate biofilms. Therefore, the challenge of residual biofilm, which may
trigger chronic infections, must be addressed. A comprehensive understanding of the
mechanisms and inherent properties of the biofilm life cycle was required to address this
grand challenge (Figure 1). The following four stages can accurately represent the process
from biofilm formation to re-spreading:

1. Initial adhesion stage: The reversible adhesions are dominated by Lewis acid–base,
van der Waals forces, electrostatic interactions, and hydrophilic–hydrophobic interac-
tions [34,35]. Irreversible adhesion is triggered by the bacteria’s own adhesins and
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adhesion proteins [36]. Reversible and irreversible adhesion of bacteria to the surface
is the main feature of this stage.

2. Early biofilm formation stage: After bacteria adhere to the surface, bacteria activate
their own metabolic pathways, which induces the bacteria to secrete metabolites
(proteins, polysaccharides, eDNA etc.) to form EPS. At the same time, this also pro-
motes bacteria-to-bacteria adhesion and activates quorum sensing (QS) [37]. Proteins,
polysaccharides, eDNA, and QS of bacteria are the main features of this stage.

3. Biofilm maturation stage: A complex spatial structure and a microenvironment with
chemical gradients (acidity, hypoxia, high reduction, etc.) are gradually formed
with the increase in EPS synthesized by bacteria. At the same time, some bacteria
will enter a dormant and persistent state [38]. Therefore, the characteristics of this
stage are mainly complex chemical gradient microenvironment, persistent cells, and
dormant cells.

4. Biofilm dispersion stage: Bacteria will secrete relevant secretions (enzymes, D-amino
acids, surfactants, and other substances) to destroy EPS in response to nutrient de-
ficiencies and accumulation of toxic substances, returning to a planktonic state [39].
This stage is characterized by associated secretions of bacteria and residual biofilm
after dispersal.

Depending on the growth environment, biofilm formation changes, resulting in differ-
ent biofilm spatial structures and bacterial gene expression differences [40–43]. Although
the “characteristics” of biofilm have been revealed for many years, the clinical treatment
of biofilm infections has not been updated due to the high complexity of biofilms [44,45].
These days, with the rapid growth experienced in materials science, surface-coating and
eluting substrates materials are gradually being used clinically to remove biofilms (e.g.,
antibiotic-loaded bone cement to prevent orthopedic infections) [46,47]. Similarly, studies
of biomimicry, surface textures, and chemicals in plants and animals are also promising
approaches to preventing microbial adhesion and biofilm formation [48,49]. Using the
amino acids and enzymes produced by bacteria to accelerate disintegration of biofilms is
also one of the frontiers of anti-biofilm research [50,51]. These materials and technologies
are very promising to solve the problem of biofilm infection. Although these studies have
some statistical significance, to determine whether these technologies have the potential of
being transformed into clinical technologies, researchers have to consider using in vivo or
human cell models for further verification. The main reason for this is that most biofilm
models are constructed from a single strain in the laboratory, but actual clinical situations
may consist of multiple strains or lurking beneath probiotics [52,53]. Relevant studies
have pointed out that some strains cannot form biofilm alone, but a variety of strains will
help each other to build shelters together [54], such as Actinomyces naeslundii T14V and
Streptococcus oralis (S. oralis) 34, which promote symbiosis in saliva to form biofilm [55].
Compared with a biofilm of a single bacterial strain, the harm of a multi-species biofilm
to the host will increase exponentially. Interestingly, bacteria will also have hostile rela-
tions that try to destroy the enemy’s shelter [56], such as Pseudoalteromonas tunicate, in
the process of biofilm formation, which could inhibit and destroy the biofilm formed by
other bacteria [57]. Therefore, the mutual hostility or mutual support in vivo between
reference bacteria can provide effective theoretical support for design and development of
biofilm-targeting materials.

Several excellent reviews discuss the protective mechanisms of biofilms against bac-
teria in response to antibiotics, antibacterial agents, and host immunity [17,58–60]. This
review focuses on development and design of specific targeted biofilm therapeutic strate-
gies and materials, as well as the challenges faced. A comprehensive description of how the
properties of membranes at different stages can be exploited to design targeted materials,
current insights into the targeting of EPS matrices, inhibition of chemical gradients and
diffusion pathways, etc., as well as drug resistance and tolerance reversal strategies for
dormant cells and persistent bacteria in biofilms, are provided. Furthermore, this paper
reviews strategies that are expected to improve the efficacy of current clinical treatment
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modalities or provide new biofilm-targeting technologies, including the targeting adhesin
strategy, quorum quenching, phage-targeting strategy, and targeting dormant cells strat-
egy. Herein, we focus on biofilm-specific targeting materials that can be applied clinically.
However, not all biofilm-targeting technologies are limited to clinical but also include
agriculture, forestry, marine, and other directions. Therefore, we provide a comprehensive
list of recent and prospective biofilm targets in Table 1. Finally, we believe that treatment
of mature biofilm infections is more similar to treatment of cancer because their micro-
environments are extremely similar (such as low pH, oxygen deficiency, overexpression
of GSH, abnormal osmotic pressure, etc.) [17,37,38]. However, it may be more difficult
than cancer therapy because the life cycle of biofilm is faster and more uncontrollable. It is
important to note that more complex tissue structures, such as EPS, QS, and eDNA, are
present in biofilms to inhibit therapeutic effects. More importantly, biofilm infections often
exist in complex flora, making it more challenging to specifically target pathogen biofilms
and achieve clearance [61,62]. Therefore, in the face of various challenges, biofilm-targeting
technology has irreplaceable significance.
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Figure 1. The biofilm life cycle. Different stages of bacterial biofilm formation. (a) Initial adhesion,
in which bacteria adhere to surface of tissue through their own adhesins of bacteria; (b) early biofilm
development stage, whereby the bacteria begin to divide and produce EPS by quorum sensing,
eDNA, polysaccharide, and protein; (c) biofilm maturation stage, in which the biofilm will form
a stable 3D structure through EPS, and the internal microenvironment exhibits a certain chemical
gradient, such as acidity, hydrogen peroxide (H2O2), hypoxia, and overexpressed glutathione (GSH);
(d) biofilm dispersion stage, whereby bacteria are oppressed by the extreme microenvironment,
and their own secreted enzymes and D-type amino acids lyse the biofilm and return to the state of
planktonic bacteria.
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Table 1. Characteristics, targets, and targeting advantages of biofilm at different stages.

Biofilm Types Characteristic Target Pros Cons

Initial adhesion
stage

Reversible and
Irreversible adhesion.

Adhesin and Adhesion
protein.

Prevention preferable
to treatment. Stability of surface coatings.

Will not cause drug
resistance. Not necessarily kill bacteria.

Access not required
after implantation.

Potential substrate
utilization by host.

Early formation
stage

Active intercellular
Communication and

progressive formation
of EPS.

QS; Polysaccharide
Intracellular Adhesin

(PIA); eDNA;
Polysaccharides and

Proteins.

Molecular medicine.
Potential degradation by

nucleases, proteins, or
enzyme.

Controlled locally. Highly localized.
It will affect

metabolism and will
not produce drug

resistance.

Composition variability.

Maturation stage
Mature EPS and

Gradient chemical
microenvironment and

Changes in bacterial
metabolism.

Hypoxic; Low pH;
Negative;

Overexpression GSH;
H2O2; Persistent and

dormant bacteria.

Disrupt pathogenic
microenvironment.

Difficult to simulate in vivo
models.

Readily functionalized. Incomplete eradication.
Active on dormant

cells. Interaction with host.

Dispersion stage
Accumulation of

biofilm residues and
associated secretions.

Enzymes, D-amino
acids; surfactants and

others.

Readily combined with
antimicrobials.

Low spatiotemporal
controllability.

Avoid cell dormancy. Residues to be resolved.

High universality.
Release of pathogens may

result in recolonization and
acute infection.

2. Strategies of Targeting Initial Adhesion Stage
2.1. Inhibit Biofilm Formation

Although, most of the time, points studied on biofilms were in the middle and late
stages of the biofilm life cycle, we believe that precise targeting of adhesion properties
during the first stage of biofilm formation is an effective strategy [63]. First, its advantage
is avoiding drug resistance, tolerance, impermeability, etc., caused by the middle and late
stages of biofilms. Second, early anti-adhesion strategies can not only effectively inhibit
formation of biofilms but also achieve preventive effects.

2.1.1. Targeted Adhesin Strategy

Bacterial adhesin plays a key role in bacterial colonization and subsequent infection.
Adhesin or adhesion protein could be used as a bacteria–host cell or bacteria–bacteria
“bridge”. Multiple adhesions are activated and expressed (such as proteins, lipids, and
glycopolymers) [64]. Moreover, vitronectin and fibrinogen were also used similarly to
adhesin [65]. Linke et al. found that Yersinia enterocolitica uses tiny sticky hairs to attach
to the target. Yersinia adhesin A (YadA) protein of bacteria could penetrate two layers of
cell membrane without any cell energy [66]. Recent research found that targeting-adhesin
strategies were not thought to increase bacterial resistance nor interfere with the bacterial
life cycle [67,68]. Therefore, the adhesion stage was a strategic step for bacteria, and anti-
adhesion therapy could effectively hinder the infection process. Notably, using materials to
reduce bacterial adhesion could also promote the host immune system [69,70]. According
to these principles, various therapies have been designed. Research by Heras et al. showed
that blocking the super adhesion protein (UpaB) of bacteria could effectively inhibit bacterial
colonization in the host [71]. Zhan et al. synthesized an indole derivative of selenium-
containing (SYG-180-2-2, C21H16N2OSe), which could inhibit biofilm by downregulating
icaA and icaD and upregulating icaR and coY, thereby affecting PIA (ica: intercellular ad-
hesin) [72]. Ravi et al. demonstrated that 2-hydroxy-4-methoxyben- zaldehyde (HMB,
natural product of Hemidesmus indicus) could target the initial cell adhesion of Staphylococcus
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epidermidis (S. epidermidis) (Figure 2a) [73]. Sortase A (SrtA) is able to catalyze the initial
adhesion between Streptococcus mutans (S. mutans) surface protein Pac and lectin. Ma et al.
found that myricetin can effectively inhibit SrtA (Figure 2b) [74]. Liu et al. confirmed
that nucleotide second messengers (such as cyclic adenosine monophosphate (cAMP) and
cyclic diguanylate (c-di-GMP)) play an important role in regulating biofilm maintenance.
It has been reported that pathogenic bacteria have evolved strategies to manipulate host
cAMP concentrations [75]. This discovery provided an important direction for new drug
design. Ashraf et al. found that the extract of Eruca sativa Miller (E. sativa) could effec-
tively target adhesion proteins. A molecular docking analysis of E. sativa phytochemicals
showed interaction with active site of adhesion proteins Sortase A, EspA, OprD, and type IV
b pilin of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Pseudomonas aeruginosa
(P. aeruginosa), and Salmonella enterica serovar Typhi (S. enterica ser. typhi), respectively [76].
Krachiler et al. designed a functionalized multivalent adhesion molecules (MAM7) ad-
hesive polymer bead that could effectively reduce infection of P. aeruginosa in the burn
model and promote healing (Figure 2c) [77]. Cardoso et al. used gluconamide moieties
to specifically target lipopolysaccharide (LPS) molecules in the outer membrane of E. coli,
which efficiently prevented non-specific protein adhesion [78].

2.1.2. Interference Adhesion Strategy

Developing adhesion targeting compounds has been a long and in-depth development
process. Thus, some scholars have proposed a strategy to interfere with adhesin, which
uses compounds as analogues of bacterial adhesin receptors to make bacteria “mistakenly”
adhere to the host to achieve anti-adhesion effects [79,80]. A treatment scheme using
α-mannoside that interferes with FimH1 for treatment of catheter-related urinary tract in-
fection (CAUTI) was applied [81,82]. In addition, Hartmann et al. used mannose-modified
diamond to effectively enrich E. coli in sewage, achieving the removal effect [83]. In addi-
tion, after the discovery of PapG protein, a therapeutic scheme to inhibit PagG adhesion
with galacto-oligosaccharide was finally formed in the clinical environment [84]. Most
pathogens were opportunistic pathogens, and interaction of specific receptors and outer
membrane molecules between bacteria and tissue cells was a prerequisite for infection [85].
Thus, interfering with bacterial adhesion is a therapeutic strategy that deserves further
investigation. Zhang et al. prepared a nanoparticle coated with the outer membrane of
Helicobacter pylori (H. pylori) (Figure 3a). NPs could compete with bacteria for binding
sites on cells and inhibit bacteria from adhering to gastric epithelial cells and stomach
tissues [86]. L. Davies et al. identified a 20 kDa peptide binding domain in the 1.5 MDa RTX
adhesin of marine bacteria (Vibrio cholerae and Aeromonas veronii). Researchers used peptide
library analysis to obtain a tripeptide that could effectively inhibit pathogen adhesion to the
host [87]. Choi et al. found that D-arabinose could inhibit biofilm formation of oral bacteria
(S. oralis, Fusobacterium nucleatum (F. nucleatum), and Porphyromonas gingivalis (P. gingivalis))
and the activity of autoinducer 2 (a QS molecule) [88]. Xu et al. designed G(IIKK)3I-NH2
(G3) based on α- A helical peptide, which inhibited bacterial adhesion and interfered with
biofilm formation (Figure 3b) [89].
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2.1.3. Surface Anti-Adhesion Strategies

In clinical practice, biofilm infections caused by implants and medical devices often
occur. A foreign body implantation is one of the main causes of biofilm infection [44]. To
eliminate this biofilm-related infection, only uninfected medical equipment can be used,
along with high-dose antibiotic treatment. Shortly afterwards, Khoo and Ji et al. proposed
that endowing anti-adhesion performance to medical devices can better inhibit formation
of biofilm and greatly reduce the use of antibiotics [46,90]. Based on this theory, a large
number of laboratory designs have been proposed. Based on the optimization strategy
of film surface morphology and hydrophobicity, Wang et al. designed four membranes
with very high antiseptic properties (Figure 4a) [91]. Inspired by hydration ability of zwit-
terionic brushes, Hong et al. grafted 2-methacryloyloxyethyl phosphate choline (MPC)
onto medical devices, which can effectively inhibit formation of biofilm [92]. Wang et al.
proposed a stereochemical antibacterial strategy to achieve an anti-adhesion effect through
the selective differentiation of L/D molecules by bacteria [93]. Antognazza et al. pat-
terned silk film substrates that could effectively reduce adhesion of bacteria [94]. Leu et al.
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modified the polypropylene (PP) surface by reactive ion etching (RIE) technology and
reduced the adhesion of E. coli on the PP surface, which decreased by 99.6% via pro-
hydrophobic interactions [95]. In vitro surface anti-adhesion technology alone does not
meet practical clinical needs; it is also vital to address how to apply these techniques
in vivo. Didar et al. transferred the topography present with hierarchical polystyrene sur-
faces onto polydimethylsiloxane (PDMS), which prevents biofilm and thrombosis in vivo
(Figure 4b) [96]. Sun et al. integrated highly antibacterial copper nanoparticles (CuNPs)
into hydrophilic polydopamine (PDA) coating and finally fixed it on a reverse osmosis (RO)
thin-film composite membrane, which could reduce bacterial adhesion and significantly
inhibited the formation of biofilm [97]. Ji et al. constructed a multifunctional modified
surface multifunctional coating (mPep). Application of mPep in medical catheters in vivo
proved to be effective in reducing bacterial adhesion and antibacterial (Figure 4c) [98].
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Copyright 2020, Hai Xu.



Pharmaceuticals 2022, 15, 1253 8 of 34

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 36 
 

 

zwitterionic brushes, Hong et al. grafted 2-methacryloyloxyethyl phosphate choline 

(MPC) onto medical devices, which can effectively inhibit formation of biofilm [92]. Wang 

et al. proposed a stereochemical antibacterial strategy to achieve an anti-adhesion effect 

through the selective differentiation of L/D molecules by bacteria [93]. Antognazza et al. 

patterned silk film substrates that could effectively reduce adhesion of bacteria [94]. Leu 

et al. modified the polypropylene (PP) surface by reactive ion etching (RIE) technology 

and reduced the adhesion of E. coli on the PP surface, which decreased by 99.6% via pro-

hydrophobic interactions [95]. In vitro surface anti-adhesion technology alone does not 

meet practical clinical needs; it is also vital to address how to apply these techniques in 

vivo. Didar et al. transferred the topography present with hierarchical polystyrene sur-

faces onto polydimethylsiloxane (PDMS), which prevents biofilm and thrombosis in vivo 

(Figure 4b) [96]. Sun et al. integrated highly antibacterial copper nanoparticles (CuNPs) 

into hydrophilic polydopamine (PDA) coating and finally fixed it on a reverse osmosis 

(RO) thin-film composite membrane, which could reduce bacterial adhesion and signifi-

cantly inhibited the formation of biofilm [97]. Ji et al. constructed a multifunctional mod-

ified surface multifunctional coating (mPep). Application of mPep in medical catheters in 

vivo proved to be effective in reducing bacterial adhesion and antibacterial (Figure 4c) 

[98]. 

 

Figure 4. Schematic diagram of surface anti-adhesion technology. (a) The anti-adhesion polymers 

were synthesized by RAFT homopolymerization of MVMs. Reprinted with permission from Ref. 

[91]. Copyright 2019, Prof. Wenxin Wang. (b) Transferring the topography present of hierarchical 

Figure 4. Schematic diagram of surface anti-adhesion technology. (a) The anti-adhesion poly-
mers were synthesized by RAFT homopolymerization of MVMs. Reprinted with permission from
Ref. [91]. Copyright 2019, Prof. Wenxin Wang. (b) Transferring the topography present of hierarchical
polystyrene surfaces onto PDMS, forming an anti-adhesion, preventing thrombosis, and flexible
biocompatible elastomer. Reprinted with permission from Ref. [96]. Copyright 2022, Tohid F. Didar.
(c) The catechol, cationic, and anionic units to construct a multifunctional modified surface multi-
functional coating (mPep) in medical catheters. Reprinted with permission from Ref. [98]. Copyright
2020, Jian Ji.

On balance, anti-adhesion technology has a “prevention preferable to treatment”
advantage in anti-biofilm infection, and it is also one of the essential conditions for food
packaging materials and biological storage materials. The potential advantages of targeted
adhesion technology as a vaccine or drug remains underexplored in anti-biofilm therapy.
Most compounds of targeting adhesins were easily ignored thus far because they did
not exhibit specific minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC). Identifying their potential to trigger biological function and effect,
in comparison with the main studies, such as those involving peptides and antibiotics,
would be of value. Therefore, whether in vivo or in vitro, anti-adhesion technology is very
promising to achieve clinical transformation.
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2.2. Targeting Biofilm Formation Strategy

As planktonic bacteria adhere to tissues or abiotic surfaces, bacteria spontaneously
enter the second stage: biofilm formation. At this stage, the bacterial phenotype gradually
changes, which causes the bacteria to have mutual adhesion and aggregate, forming
small colonies. Bacteria will trigger QS for “communication” during formation of small
colonies. Acyl-homoserine lactones (AHL) and autoinducing peptides (AIPs) are signaling
molecules that mediate Gram-negative and Gram-positive bacteria, respectively [99]. At
the same time, there was a “general language” autoinducer-2 (AI-2) that can mediate
both Gram-negative and Gram-positive bacteria [100]. After bacteria receive QS signal
molecules, bacteria gradually change their metabolism and participate in biofilm formation,
including expression of PIA, bacterial autolysis and death, release of eDNA, and secretion
of polysaccharides and proteins [101–103]. Finally, EPS is formed under the joint action of
various mechanisms [30]. Therefore, the biological behaviors of the above bacteria can be
used as potential targets to provide a theoretical basis for design of targeting materials.

2.2.1. Quorum Quenching

Formation of biofilm is a complex and relatively slow dynamic process. QS is the
communication language of bacteria, which can effectively tell bacteria what to do now.
At present, it is known that QS molecules could directly regulate bacterial behavior in
biofilm. Many studies have reported that some compounds had the ability to quench QS,
thereby destroying the biofilm, termed quorum quenching (QQ) [104]. These molecules
are called quorum sensing inhibitors (QSIs) [105]. QSIs have been found to destroy the
QS process mainly through the following ways thus far: 1. inhibit QS molecular synthesis;
2. simulate QS molecules; 3. degrade QS molecules; 4. chemically modify QS molecules.
QSI will not affect DNA and cell division of bacteria, so bacteria rarely develop related drug
resistance [106]. Many QSI compounds have been found and synthesized now; therefore,
this paper only reviews QSI compounds with targeting functions.

QSI molecules with targeting function mainly have two mechanisms of action: the
first is to target QS synthetase to inactivate or degrade QS signal molecules [107,108]. The
second is the receptor that targeted QS signaling molecules so that the receptor cannot
receive QS molecules or compete with QS molecules [109,110]. The quorum-quenching
enzyme (QQE), such as acylase and lactonase, can degrade the QS signal and destroy QS
in the extracellular environment. Tzanov et al. found that QQE acyltransferase could
reduce the AHL signal (Figure 5a) [111]. The aceleacin A acylase (Au AAC) and N-acyl
homoserine lactone acyltransferase (Au AHLA) have the same effect [112]. These enzymes
have a QS targeting function. In addition, accessory gene regulator (agr) is the most classic
QS system of S. aureus [113]. Xu et al. verified that hyperbranched poly-L-lysine (HBPL)
inhibited QS mediated by the agr system and inhibited expression of QS-related genes
(Figure 5b) [114]. Luteolin, as a QSI, also inhibited downregulation of agrA gene, but
whether it has a targeted effect needs further study [115]. Bendary et al. further proved that
zinc oxide nanoparticles (ZnO NPs), Hamamelis tannin (HAM), and protease K could be
used as QSIs to downregulate the agrA gene, thereby inhibiting formation of biofilm [116].
Pseudomonas quinolone signal (PQS) is bound by cytosolic LysR-type receptor PqsR (also
known as MvfR) [117]. Therefore, PqsR antagonists were found [118]. Recent studies have
found that quercetin can specifically target the lasIR and rhlIR systems of P. aeruginosa and
LuxS and agr systems of Listeria monocytogenes (L. monocytogenes), thereby inhibiting the QS
system (Figure 5c) [119,120]. Ho et al. found a new lipophilic QSI for destroying biofilm
(Figure 5d) [121].
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Figure 5. Quorum sensing targeting technology. (a) A schematic diagram of QQE acylase and
amino-bearing biopolymer AM was covered layer by layer on the AgNPs template. Reprinted
from Ref. [111]. (b) Schematic diagram of the agr QS system and expression of QS-related genes
in Methicillin-resistant Staphylococcus aureus (MRSA). Reprinted with permission from Ref. [114].
Copyright 2022, Feng Xu. (c) Two quorum sensing systems (a) LuxS system and (b) agr system in
L. monocytogenes could be used as targets of quercetin. Reprinted with permission from Ref. [119].
Copyright 2020, Yong Hong Meng. (d) The self-assembling nanoparticles of a squalenyl hydrogen
sulfate (SqNPs) composed of a new lipophilic QSI (1), tobramycin, and SqHS. Reprinted from
Ref. [121].

2.2.2. Targeted Polysaccharide Strategy

As one of the important components of the protective barrier and biofilm surface,
polysaccharides can enhance intercellular adhesion and aggregation of bacteria, promote
bacterial immune escape, stabilize, and maintain the biofilm microenvironment, and pro-
vide nutrients for bacteria [122–125]. Targeted design of related materials and strategies
to target polysaccharides in biofilm are effective methods to remove biofilm. The initial
targeting strategy is to inhibit enzymes that produce polysaccharides in bacteria, such as
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glucosyltransferases (Gtfs) in Gram-positive S. mutans and aggregative exopolysaccharides
Psl and Pel in Gram-negative P. aeruginosa (Figure 6a) [126–128]. At present, development
of Gtfs inhibitors for S. mutans is very extensive (Figure 6b) [129,130]. It is worth noting
that Gtfs inhibitors are also used in developing vaccines [131]. Similarly, the combination
of Gtfs inhibitors and drugs could demonstrate practical anti-cariogenic efficacy. Disperse
B (DspB), glycoside hydrolase, and monoclonal antibodies are also common mainstream
strategies for targeting EPS. Drug delivery systems (DDS) could protect enzymes from
the external environment, and enzymes provide DDS targeting specificity [132]. DspB can
efficiently and specifically hydrolyze poly-beta (1,6)-N-acetyl-glucosamine (PNAG) [133].
Immobilized DspB-MagR showed a high inhibitory effect on biofilm [134]. Using enzymes
to degrade polysaccharides that disintegrate biofilm was gradually accepted; the related
technology was rapidly expanded. Fan et al. devised a method based on α-amylase to de-
velop a microneedle patch for removing biofilms caused by bacterial infections in wounds
(Figure 6c) [135]. Therapeutic strategies of P. aeruginosa biofilm infections based on enzyme
targeted acidic heteropolysaccharide (Alginate) have been reported [136,137]. Lee et al.
cloned an alginate lyase Aly08 from marine bacterium Vibrio sp. SY01 [138]. Daboor et al.
also purified alginate lyase Alyp1400 from marine P. aeruginosa [139]. The above extracted
lyase could form an efficient combination treatment with antibiotics. Zhang et al. further
encapsulated alginate lyase and other drugs to form a silver nanocomposite, and success-
fully eradicated P. aeruginosa infection in the lungs of mice [140]. In addition to alginate,
P. aeruginosa biofilm also contains polysaccharides Pel and Psl. Drozd et al. fixed Pel
hydrolase PelA on bacterial cellulose, solving the problem of chronic wound infection [141].

2.2.3. Targeted eDNA Strategy

In 1956, Catlin et al. first observed eDNA as one of the structural components of
biofilm, which not only proved that eDNA can be separated from the biofilm matrix but
also proved that addition of bovine deoxyribonuclease I (DNase I) can significantly reduce
the viscosity of biofilm, eventually leading to diffusion [142]. Subsequent studies have
proven that anionic eDNA can chelate cations from the immune system and drugs in the
biofilm, providing a “protective umbrella” for bacteria [143,144]. When bacteria are hungry,
eDNA acts as a nutrient. In addition, eDNA can also increase the hydrophobicity of the
cell membrane, making it easier for bacteria to adhere to the cell surface [145,146]. Thereby,
eDNAase synergistic therapy is applied and born [147–149]. Based on the above theory, the
targeting materials and strategies of eDNA have been put forward successively, and good
results have been achieved in removing biofilm and interrupting biofilm formation.

To date, targeted eDNA technology is no longer limited to DNase. Bing et al. designed
an eDNAase-simulated artificial enzyme based on graphene-oxide-based naturalistic acid–
cerium (IV) composite (GO-NTA-Ce) (Figure 7a) [150]. Qu et al. also designed cerium (IV)
complexes (eDNAase mimics) for targeting and hydrolyzing eDNA in biofilm [151]. As
the structure and mechanism of eDNA were gradually analyzed, other targeting materials
and strategies have emerged. Natural products had always been the first choice for drug
research and development. Some natural products with anti-biofilm effects were screened,
and it was found that emodin could effectively target eDNA in biofilm [152]. Ramesh
et al. reported an amphiphile (C1) with eDNA and membrane targeting, assembling
nanoparticles based on human serum albumin for targeting and destroying the biofilm
of S. aureus (Figure 7b) [153]. Chang et al. screened a fluorescence probe (CDr15), which
realized eDNA visualization in P. aeruginosa biofilm [154].
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Figure 6. Polysaccharide targeting technology. (a) 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)
ethyl] imino}-1,4-dihydro-2-quinoxalinylidene) ethanamine targeting glucosyltransferase and docking
analysis. Reprinted with permission from Ref. [126]. Copyright 2015, Yuqing Li. (b) Schematic diagram
of inhibition process of Gtfs inhibitors for S. mutans. Reprinted from Ref. [135]. (c) Schematic diagram
of α -amylase-PDA@Levo microneedle patch treating wound biofilm infection in mice. Reprinted with
permission from Ref. [135]. Copyright 2022, Daidi Fan.
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Figure 7. The eDNA targeting technology. (a) GO-NTA-Ce was used to target and destroy biofilm.
Reprinted with permission from Ref. [150]. Copyright 2022, Haiwei Ji. (b) Amphiphilic compound C1
with eDNA and membrane-targeting function, assembled with HNP into nanoparticles for targeting
and destroying S. aureus biofilm. Reprinted with permission from Ref. [153]. Copyright 2016, Prof.
Aiyagari Ramesh.

2.2.4. Targeted Protein Strategy

Protein plays an important role in promoting formation of biofilm and maintaining
structural stability of biofilm [155,156]. More and more evidence shows that biofilm-
associated protein can promote development of bacterial biofilm [157–160]. Interestingly,
extracellular proteins do not work alone but jointly with eDNA, polysaccharides, and
other components. Some studies have shown that biofilm will spread rapidly after the
absence of extracellular proteins in EPS [161,162]. Thus, targeting the protein in biofilm is
emerging as a hot research topic. Lin et al. designed a framework nucleic acid delivery
that could deliver antisense oligonucleotides to target S. mutans, destroying the biofilm
(Figure 8a) [163]. The characteristics of carbohydrate–protein interactions were well known.
Zhang et al. proposed an inspired nanoplatform composed of spiropyran and galactose. It
has dual functions of selectively imaging and eliminating the biofilm in situ [164]. Based on
the efficient hydrolysis mechanism of protease to protein, a series of enzyme-functionalized
materials were derived. Weldrick et al. introduced a gel carrier nanotechnology based
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on protease functionality, which, loaded with antibiotics, showed an efficient removal
effect on biofilm (Figure 8b) [165]. Devlin introduced that mesoporous silica nanopar-
ticles (MSNs) functionalized by servants could efficiently hydrolyze proteins in MRSA
biofilm [166]. Curcumin can also target cellular walls and proteins of Vibrio parahaemolyticus
(V. parahaemolyticus) [167].
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Figure 8. Protein targeting technology. (a) Scheme of a framework nuclear acid delivery that could
target S. mutans and destroy biofilm bifunction. Reprinted from Ref. [163]. (b) Preparation process
and targeting mechanism of gel carrier nanotechnology of protease functionalized. Reprinted with
permission from Ref. [165]. Copyright 2019, Vesselin N. Paunov.

Numerous compounds with targeting functions have been synthesized and identified
to date. Among them, some compounds were effective in reducing substances in biofilm.
However, the future research directions of anti-biofilm molecules with targeting function
should include several aspects. First, we should consider the species-specific effects of
targeted molecules. They may target a substance in the biofilm of pathogenic bacteria, but
they may also have the opposite effect on probiotics. In addition, the effect of targeted
molecules on normal cell function should be considered. Second, it is worth noting that the
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targeted molecules are basically targeting a single substance, but it is worth considering
whether the targeted molecules will have a cross-reaction effect on the multi-component
aspects of biofilm. Third, most studies on targeted molecules are completed in in vitro
biofilm models, which means that they are not necessarily applicable to biofilm produced
in vivo. Therefore, future research should focus on use of in vivo models to confirm the
anti-biofilm activity of targeted molecules.

2.3. Targeting Strategy for Biofilm Maturation Stage

In the mature stage of biofilm, bacteria will secrete much EPS and then form a dense
mushroom-shaped or pile-shaped mature biofilm with 3D structure [59]. Its internal struc-
ture is stable and hydrophobic, which can effectively resist external mechanical forces
and drug invasion. Due to the dense encapsulation of EPS, the continuous fermenta-
tion, and accumulation of bacterial metabolites in biofilm, a unique chemical gradient
microenvironment is formed, such as hypoxia, low pH, negative charge, overexpressed
GSH, etc. [168]. These extreme microenvironments will cause some bacteria to enter a
dormant and persistent state, thereby reducing the sensitivity of bacteria to antimicrobial
agents and antibiotics [169,170]. This is also one of the main reasons why mature biofilm
infection is difficult to clear.

2.3.1. Targeted Persistent and Dormant Cells Strategy

After the biofilm is formed, the internal chemical gradient environment of biofilm
is hostile to bacteria, so bacteria differentiate into different bacterial subpopulations to
protect themselves. In 1942, persistent bacteria were first discovered. They will not develop
resistance to drugs, but, because of their slow metabolism, or even dormancy, they can
avoid being persecuted by drugs [171]. Similar phenomena have been found in clinical
treatment [172]. Therefore, in view of these results, it was proposed that this was equivalent
to slow and chronic infection [173]. Targeted dormancy, that is, persistent bacteria, is
conducive to removal of biofilm and was more conducive to solving the problems of
chronic infection and repeated infection.

Typical representatives of dormant bacteria are Mycobacterium tuberculosis (Mtb). It is
reported that targeting persistent bacilli could effectively improve the treatment success
rate and shorten the time after granuloma formation [174]. Dialylquinoline TMC207 could
target adenosine triphosphate (ATP) synthase, thereby damaging the lipopeptide of the
bacterial membrane to achieve the effect of scavenging persistent Mtb [175]. Based on
structure–activity relationships of TMC207 analogs, many derivative compounds have
been gradually reported for targeting persistent bacteria (Figure 9a) [176]. Some researchers
also found that halogenated phenazine (HP) derivatives can also effectively target persistent
bacteria (MRSA; vancomycin-resistant Enterococcus (VER); Mtb) [177]. The stringent response
is an adaptive mechanism controlled by response enzyme (RelMtb), which will promote
Mtb to enter a persistent state. Using lead compound to target RelMtb could directly kill
Mtb of a dormant state [178]. Some diterpene analytics can also target RelMsm and RelZ
to inhibit formation of persistent cells and biofilm [179]. Narayanan et al. reported that a
compound (FNDR-20081) could target maturities marR (Rv0678, a regulator of MmpL5) [180].
Some studies hold that waking up persistent cells is more conducive to killing them than
killing them directly [181]. Kim et al. found that adenosine (ADO) can activate ATP and
guanosine triphosphate (GTP) synthesis and promote cell respiration, thereby enhancing
killing of persistent cells by antibiotics [182]. Rotello et al. proposed a strategy of using
biodegradable nanoemulsions to load eugenol and triclosan for synergistic removal of
biofilm and persistent cells [183]. In addition, Acyl peptide antibiotic ADEP4 is an effective
activator of ClpP protease, which can adjust persistent MRSA [184]. Yue et al. found
that felodipine enhanced the clearance efficiency of aminoglycosides on persistent cells
(Figure 9b) [185].
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Figure 9. Persistent and dormant cells targeting technology. (a) Compound structure (TMC207)
with the function of targeting persistent bacteria and related derivative structure (Compound 1–5).
Reprinted with permission from Ref. [176]. Copyright 2012, Anil Koul. (b) New uses of old drugs
using felodipine to regulate bacterial metabolism and improve the clear efficiency of aminoglycosides
on persistent cells. Reprinted from Ref. [185].

2.3.2. The Intelligent Release of Microenvironment Response Strategy

Chemical gradient is one of the classic characteristics of biofilm maturity. Thus far,
antibacterial materials that use chemical gradient to achieve intelligent release are constantly
emerging. Since this review mainly discusses materials and strategies with targeting
function, we will briefly introduce this.

Hypoxic

The hypoxic environment will limit metabolism of bacteria, thereby increasing drug
resistance [186]. At the same time, it will also enhance the invasion function and virulence
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factors of bacteria [187]. Therefore, alleviating the hypoxic environment is an effective
method to reverse drug resistance of biofilm. Carrying oxygen (O2) can not only effec-
tively overcome a hypoxic microenvironment but also enhance photodynamic therapy
(PDT) [188–190]. It has also been reported that use of catalysts or enzymes to catalyze the
endogenous overexpression of H2O2 to produce O2 can also effectively solve the hypoxic
microenvironment of biofilm (Figure 10a) [191–195].

Low pH

Lactic acid and acetic acid, which are metabolized by bacteria, will continue to accu-
mulate in the biofilm. At the same time, inflammatory cells continuously release lactic acid,
leading to a slight acid phenomenon in the microenvironment of mature biofilm [196,197].
PH-responsive drug delivery systems are widely used in oncology therapy. They are stable
in neutral environments but degrade or destroy to release drugs in an acidic environment.
Current known degradable bonds that are sensitive to acidity include Schiff bases, esters,
ketals, acetals, anhydrides, etc. [198,199]. In addition, using functional groups at a low pH
to realize charge reverse and dimensional change is also one of the mainstream strategies
in anti-biofilm therapy (Figure 10b) [200–202].

Negative

The negative microenvironment of mature biofilms is primarily caused by eDNA. The
negative microenvironment can effectively neutralize invasion of cationic drugs or antibiotic
peptides. Using the negative characteristics to design materials and strategies can enhance
penetration and retention of materials into biofilm through electrostatic interaction [203,204].
Strategies that exploit negative features are often combined with other targeting strategies
to remove biofilms (Figure 11a) [205–207].

Overexpression GSH

In biofilm, GSH acts as an antidote against oxidative stress damage to bacteria from
reactive oxygen species. In addition, GSH is a major sulfur source for bacteria, and the sulfur
metabolic pathway is one of the main causes of bacterial drug resistance [208]. Therefore,
using materials to consume GSH in biofilm may make bacteria unable to maintain redox
equilibrium, which is favorable for biofilm removal [209]. Some studies have proposed
that using endogenous signal molecule nitric oxide (NO) not only consumes GSH but also
disintegrates biofilm and promotes immunity (Figure 11b) [210].

Hydrogen Peroxide

It is understood that endogenous H2O2 is over-expressed in the microenvironment of
biofilms. As discussed above, H2O2 is commonly used as a catalytic substrate to produce
O2 and alleviate a hypoxic microenvironment. H2O2 is converted into toxic hydroxyl
radicals and superoxide radicals under catalysis of peroxidase (POD) or catalyst [211,212].
This kind of treatment is called chemokinetic therapy (CDT) [213]. This method does not
cause bacteria to become resistant.

2.3.3. Other Targeting Strategies

For mature biofilms, in addition to the targeted strategies reviewed above, there are
different technical targeting strategies that can still be effective in eradicating biofilms.
Rapid developments in biotechnology, nanotechnology, and chemical engineering provide
unparalleled flexibility for anti-biofilm technology. Functionalized nanoparticles offer
the advantages of controllable structure, morphology, charge, size, target, and optional
antibacterial methods. These nanostructures can be used to accurately target and clear the
biofilms while avoiding bacterial resistance. We focus on the overall concept and review
some nano research in vivo models with clinical potential.
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Figure 10. Using hypoxia and low pH to realize intelligent response technology. (a) Using Mn2+

endogenous overexpression of H2O2 to produce O2 to solve the hypoxia. Reprinted with permission
from Ref. [194]. Copyright 2020, Qiuyu Zhang. (b) Schematic diagram of functional group protonation
in low pH environment to realize charge reversal and intelligent release strategy. Reprinted with
permission from Ref. [200]. Copyright 2022, Wei Hong.
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Figure 11. Using negative overexpression GSH and H2O2 to realize intelligent response technol-
ogy. (a) Nanoparticles with charge reversal; the retention capacity of nanoparticles is improved
through electrostatic interaction, thereby improving the antibacterial effect. Reprinted with permis-
sion from Ref. [206]. Copyright 2021, Fu-Jian Xu. (b) A therapeutic regimen that utilizes NO to
deplete GSH and trigger immunotherapy. Reprinted with permission from Ref. [210]. Copyright
2022, Xiaohong Li.

Magnetic Targeting Technology

Iron-based nanoparticles have stable paramagnetic properties. Among them, Fe3O4,
which is tether-free and harmless to the human body, has been widely applied in con-
struction of magnetic micro-robots [214]. Meanwhile, Fe3O4 may promote the Fenton reac-
tion, which has certain antibacterial properties. Zhang et al. designed a magnetic micro
swarm based on porous Fe3O4 masterclass, which showed efficient removal of biofilm
(Figure 12a) [215]. Shi et al. loaded glucose-oxidase and L-arginine on Fe3O4@SiO2 to
deliver nanoparticles to the infected site in mice by magnetic targeting technique. Nanopar-
ticles achieve a cascade reaction to produce NO to eliminate the biofilm infection of
drug-resistant bacteria [216]. Escarpa et al. reported a dual-propelled (both catalytic
and magnetic) lanbiotic-based Janus micromotor, which can efficiently and selectively
capture/inactivate Gram-positive bacteria and biofilms [217].
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Phage-Targeting

Bacteriophage–bacteria interaction has been a hot topic and research frontier. Specific
targeted function of bacteriophages has been used in most therapeutic areas, such as in-
testinal infection, intracellular bacterial infection, and liver disease [218–220]. As a result,
phage-targeting techniques have also appeared in treatment of biofilm infection. Yang et al.
designed a strategy of combining phage-guided targeting with AIEgens photodynamic
inactivation (PDI) [221]. Sharma et al. found a bacteriophage targeting drug resistance
Enterococcus faecalis (E. faecalis) biofilm; it is worth noting that this phage can be admin-
istered orally [222]. Hazan et al. also screened a phage targeting E. faecalis biofilm [223].
Wang et al. reported a bacteriophage-photodynamic antibacterial chemotherapy for precise
antibacterial and biofilm ablation (Figure 12b) [224]. Hatful et al. reported for the first
time the therapeutic effect of bacteriophages on multi-drug-resistant Mycobacterium chelonae
and described the observed clinical efficacy. The results suggest that bacteriophages are
a promising treatment. However, the safety of phage therapy needs to be investigated
further [225].

Probiotic Targeting

Since the introduction of probiotic targeted delivery, it has been widely used in a
variety of fields, including improving gut flora, oncology, and immunotherapy. In addition,
probiotic delivery techniques have been widely used in anti-infection applications. This tech-
nique not only disintegrates biofilms of pathogenic bacteria but also effectively stimulates
the immune system, resulting in a distinct antibacterial–immune combination treatment
regimen. Chapman et al. found that four probiotics (Lactobacillus acidophilus NCIMB 30184
(PXN 35); Limosilactobacillus fermentum NCIMB 30226 (PXN 44); Lactiplantibacillus plantarum
NCIMB 30187 (PXN 47); and Lacticaseibacillus rhamnosus NCIMB 30188 (PXN 54)) could
inhibit biofilm formation of pathogenic bacteria through competing for binding sites on
the host bladder epithelium, and adhesion of urinary tract pathogens was inhibited [226].
Lorenzo Drago et al. observed two probiotics (Streptococcus salivarius 24smb and S. oralis
89A) could inhibit biofilm formation of specific pathogens and even disperse their pre-
formed biofilm [227]. Gabriele Meroniet et al. summarized that lactic acid bacteria could
inhibit the role of pathogenic bacteria biofilm through multiple pathways [228]. Successive
studies of probiotics against pathogenic bacteria have shown that probiotics have the func-
tion of targeting and inhibiting disease-causing bacteria pathogenic bacteria and have great
potential as drugs or drug vectors [229–231].

Gene Targeting

Gene targeting techniques alter endogenous genes of bacteria by homologous recom-
bination. The effects of this targeting technology could be lasting. In addition to the
advantages of directly disintegrating biofilms, it may also directly shadow the dormant
cells or newly dividing cells, leading to unique therapeutic effects [232]. Thorsten M. Seyler
et al. reported a derivative of PKZ18 (PKZ18-22) for the first time, which can selectively
target Gram-positive bacteria [233]. CRISPR interference (CRISPRi) was also one of the
main technologies developed in the field of anti-infection [234]. Kimberly A. Kline et al.
developed a dual-carrier nisin-inducible CRISPRi system in E. faecalis that can target and
effectively silence resistance genes via non-template and template chains [235]. In addition,
numerous gene targeting techniques have been applied in the research and development of
antimicrobial drugs [236–238].

Metabolic Targeting

The metabolic pathway of drug resistance has consistently been one of the hotspots of
antimicrobial research. It has the potential to reduce bacterial resistance or restore bacterial
sensitivity to antimicrobials in a number of ways. Shatalin et al. designed a cystathionine
based on bacterial hydrogen sulfide (H2S) to increase antibiotic resistance γ-Lyase (CSE)
inhibitor. The inhibitor takes CSE as its target, which inhibits production of H2S and
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reduces antibiotic resistance [208]. Other studies have also shown that targeting drug
resistance genes can be used to develop new antibacterial drugs [64,239].
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Mature biofilms are the model used in most laboratory studies, so there are a myriad
of fascinating targeting techniques available at this stage. These studies provide a valuable
theoretical basis for clinical transformation, and even some targeting techniques can target
specific cell subsets in multi-strain biofilm. The wide development of biofilm-targeting
technology should consider the following points: first, biological effects of materials be-
tween host and bacteria; second, the whereabouts and potential hazards for host of the
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materials after antibacterial processes in vivo. The most important point is whether the
targeted material has a negative effect on the normal flora during or after treatment.

2.4. Targeted Strategy for Biofilm Dispersion Stage

The biofilm dispersal phase is a unique phase that represented the transition from
bacterial biofilms to planktonic bacteria and represented the final step in the biofilm life
cycle. Dispersed planktonic bacteria lose their “shelter” and “umbrella”, so they are easier
to kill. As a result, some studies have considered active dispersal of biofilms as a promising
method to control biofilm removal [240]. However, several studies have considered active
dispersal of biofilms as a promising method to control biofilm removal. The biofilm should
be prevented from entering the dispersion stage [241–243]. Therefore, in this chapter,
we discuss the application of targeting technology from two parts: voluntary dispersion
biofilm and limited biofilm dispersion.

2.4.1. Active Dispersion Biofilm

After the biofilm has grown to a certain size, the bacteria will actively disrupt the
biofilm, thus achieving diffusion. Currently, most studies have proposed various strategies
for dispersing biofilm based on the mechanism of bacterial self-degradation of EPS. As
the strategy of enzymatic hydrolysis of EPS has been fully discussed above, the discussion
will not be repeated in this section. D-type amino acid is one of the main compounds
secreted by bacteria in the biofilm dispersion stage [244]. Therefore, therapeutic strategies
have been proposed to combine D-type amino acids with drugs. Part of the D-type
amino acids was initially used to label peptidoglycan of bacteria, thus achieving effective
targeting. However, some D-type amino acids can efficiently cleave EPS in biofilms.
Interestingly, this cleavage effect was only directed at the bacterial biofilm and is harmless
to normal cells. Cláudia et al. constructed a nanoparticle functionalized with D-amino
acids, which can break down the biofilm, thereby improving the bactericidal effect of
moxifloxacin in the biofilm [245]. Simple antibiotic-D-amino acid combination therapy
could also effectively eradicate biofilm infection of drug-resistant bacteria [246]. Wang et al.
constructed a chiral-glutamate-functionalized gold nano bipyramid (Au NBP). The results
showed that D-Glu-Au NBPs could more accurately target bacterial cell walls and eliminate
biofilms [247]. Li et al. designed a kind of micelle, and the D-Tyrosine loaded on the micelle
was released in an acidic environment to decompose the biofilm matrix [248]. Most studies
have demonstrated the great clinical value of D-type amino acid, a dispersal factor of
bacteria (Figure 13a) [249,250]. Furthermore, Olivier et al. first studied the effect of human
hormone atrial natriuretic peptide (hANP) on formation and dispersion of P. aeruginosa
biofilm [251].

2.4.2. Control Biofilm Dispersion

Some researchers believe that the control of biofilm dispersion is significant compared
to active dispersive biofilm techniques. The main reason for this is that the control of
biofilm dispersion can be manually controlled both spatially and temporally. Moreover,
it can effectively address the problem of secondary infection of biofilm residues. Manju
et al. showed that RV1717 was a kind of β-D-galactosidase in the cell wall. It has been
demonstrated experimentally that RV1717 expression is downregulated, which prevents
Mtb from dispersing from the biofilm in vitro [252]. Kobayashi et al. found that adding
Ca2+ to the culture medium could counteract the biofilm dispersion mechanism in the study
(Figure 13b) [253]. Although the research on regulating of biofilm dispersion is relatively
limited, it provides a fresh theoretical basis for development of new drugs.
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3. Conclusions and Perspectives for Future Research

Tremendous development in bacterial targeting technology has occurred in recent
years, including metabolic targeting, gene targeting, membrane targeting, protein targeting, and
extracellular matrix targeting. Compared to conventional antibacterial materials, the targeting
technique is more accurate and efficient and, therefore, has better antibacterial properties
and ablation efficiency for biofilm. The intensive study of biofilm has greatly accelerated the
pace of biofilm-targeting technologies. Targeting techniques have significantly improved
biocompatibility by fine-tuning the life-cycle properties of biofilms and related components,
combined with diagnostic imaging techniques to unlock high-dimensional multimodal
studies. Based on these advantages, biofilm-targeting technology has been applied to ultra-
sensitive diagnosis and personalized treatment. This paper reviews the known biofilm-
targeting technologies, with a particular focus on targeting dormant cells and the regulation
strategy for biofilm life cycle. While significant progress has been made at this stage, as
described in this paper, there are still many challenges in clinical targeting technology:
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1. The key barrier is the in vivo biofilm model, especially for a multi-species biofilm
model. In this regard, substantive research on the targeted techniques should be
conducted before entering the clinic; it is extremely important to implement techniques
that can accurately target the objective in multi-species biofilm.

2. Further implementation of differential targeting of pathogenic bacteria and probiotics
is highly beneficial and is expected to facilitate rapid development of immunotherapies.

3. To clarify the metabolic pathway of targeted techniques under host pathological
conditions, it is necessary to develop targeted techniques with long-term visualization
or monitoring.

4. Currently, targeting techniques target different phases of biofilms. Could there
be a technique to observe the biofilm phase in patients to make treatment plans
more effective?

5. The biological effects of targeting technology among materials, cells, and bacteria are
very worthy of study.

6. Currently, small molecules of targeted inhibitors have the potential to replace antibi-
otics for treatment, but antibiotics have a chiral structure. Research on the combination
of targeted inhibitors and stereochemistry may be a new generation of antibiotic re-
search and development route.

7. Targeting technology is needed to meet clinical needs. Cost-effective, simplified, and
economical amplification preparation strategies need to be widely studied.

In the rapidly evolving antibacterial field, we assume that continuous improvement
in biofilm-targeting technology will make it possible to target in an accurate way and
introduce single-bacterial targeting technology that is not available at present. This is not
only conducive to accurate clinical diagnosis and treatment but also helps to stimulate
discovery of new technologies.
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