
Unraveling persistent bacteria: Formation, niches, and 
eradication strategies

Zibo Yin a, Diandian Huang a, Elian M.A. Kuhn b, T. Fintan Moriarty b,*, Guofeng Li a,*,  
Xing Wang a,*

a State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 PR 
China
b AO Research Institute Davos, Davos 7270, Switzerland

A R T I C L E  I N F O

Keywords:
Persistent bacteria
Formation
Niches
Eradication strategies

A B S T R A C T

Persistent bacteria (persisters) are phenotypic variants that emerge either randomly or in response to a range of 
adverse environmental conditions. Persistence represents a state whereby a subpopulation of microorganisms 
can spontaneously enter a "dormant" state in response to environmental factors, while simultaneously exhibiting 
elevated tolerance to antimicrobial agents. This review provides the current definition of bacterial persistence 
and summarizes the mechanisms of persisters formation as well as the various niches of bacterial persistence 
encountered in clinical practice. Strategies targeting persisters are outlined, including but not limited to direct 
killing, awakening of persistent bacteria, combined clearance, and inhibition of persistence formation, and we 
conclude by proposing challenges and solutions for addressing bacterial persistence in current clinical practice.

1. Introduction

Bacterial infections have long stood as a primary threat to human 
health, with the discovery and translation of antibiotic agents in the last 
century being a major contributor to increased life expectancy. How
ever, the widespread use of antibiotics has led to the emergence of many 
drug-tolerant bacteria and a looming global crisis. One of the key con
tributors to antibiotic treatment failure and the recurrence of infections 
is bacterial persistence (Fauvart et al., 2011; Kint et al., 2012). These 
surviving bacteria, termed persistent bacteria, are a particular subpop
ulation of bacteria that exhibit characteristics that make them distinct 
from the more commonly studied resistant bacteria. Upon entering a 
"dormant" state, persistent bacteria become refractory to antibiotic 
treatment, but may resume growth under favorable conditions, thus 
perpetuating recurrent bacterial infections (La Rosa et al., 2022; 
Michaux et al., 2022). Although studying persister bacteria is chal
lenging, as outlined below, there is a widespread acknowledgement of 
the remarkable resilience exhibited by persistent bacteria, and that they 
present a formidable challenge for successful eradication.

There have been several review articles addressing the mechanism of 
persistent bacteria formation. For instance, Fisher et al. discuss the 
formation and regrowth mechanisms of persister in bacterial persistent 

infections (Fisher et al., 2017). Irving et al. review recent findings on the 
physiological roles of guanosine tetraphosphate and guanosine penta
phosphate ((pp)pGpp) in bacterial pathogenesis (Irving et al., 2021). Niu 
et al. provide a comprehensive update on the mechanisms of persisters 
formation (Niu et al., 2024). The formation of persistent bacteria is 
highly complex, resulting from a combination of multiple factors. 
Although existing reviews on the treatment of persisters have been 
summarized, they either cover extended periods without incorporating 
the latest research advancements, or lack a comprehensiveness overview 
of current treatment approaches for bacterial persisters. Moreover, the 
existing niches of bacterial persistence are rarely discussed, which 
significantly impacts the development and effectiveness of 
persister-targeted treatments. Given this context, the objective of this 
review is to provide the state of the art in our understanding of the 
biology of persistent bacteria, including mechanisms of formation and 
survival, as well as classification schemes introduced to aid definition. 
Furthermore, we will describe eradication strategies specifically tar
geting persistent bacteria, presented based on mechanism of action. 
These strategies encompass a range of approaches, including but not 
limited to direct killing, awakening of persistent bacteria, combination 
therapy, and inhibition of persistence formation. Through this system
atic presentation of underlying biology and targeted strategies, we aim 
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to identify future research directions that may in future provide 
improved treatment success for this highly relevant clinical problem.

2. Persistent bacteria

2.1. What are persistent bacteria?

Persistent bacteria are phenotypic variants that emerge either 
randomly or in response to a range of adverse environmental conditions 
within a bacterial population (Lewis, 2007; Fisher et al., 2017; Bollen 
et al., 2023). These bacteria can be classified into two types based on 
their origin. Environmentally triggered persistence is classified as Type I 
persistent bacteria, which primarily result from stressors such as 
nutrient limitation, antibiotic exposure, oxidative stress, and extreme 
pH (Helaine et al., 2014). In contrast, Type II persistent bacteria arise 
randomly. This type of persistence is less prevalent, comprising a smaller 
population that is frequently challenging to differentiate from type I 
persistent bacteria (Wang and Jin, 2022). Besides, it has been proposed 
that a hierarchy exists within the persister continuum, where some 
bacteria exhibit a high level of persistence, referred to as “deep persis
tence”, while others display weaker persistence capacity, termed 
“shallow persistence” (Zhang, 2014; Pu et al., 2019). Notably, bacteria 
in a state of deep persistence may transition into the viable but 
non-culturable (VBNC) state under certain conditions. VBNC bacteria 
are unable to regrow on standard laboratory media that would otherwise 

support their proliferation. Instead, they require specific environmental 
triggers to revert to an antibiotic-sensitive, actively growing state 
(Lewis, 2007; Ayrapetyan et al., 2018; Kim et al., 2018a). Protein ag
gregation has been implicated in the transition between persistence and 
the VBNC state. Overexpression of ObgE has been shown to accelerate 
entry into persistence, whereas deletion of the dnaK gene promotes 
protein aggregation, reduces the number of persisters, and increases the 
proportion of VBNC bacteria (Dewachter et al., 2021; Bollen et al., 
2025).

The fundamental characteristics of persistent bacteria have been 
well-established (Fisher et al., 2017; Balaban et al., 2019; Wainwright 
et al., 2021). (i) Persistent bacteria exist within the population at 
exceedingly low frequencies, typically comprising less than 0.1 % of the 
total population. (ii) Bacterial persistence arises in response to antibiotic 
or environmental stressors. (iii) Persistent bacteria are kept in a dormant 
state by adjusting carbon metabolism and energy changes, resulting in 
very slow and low-profile growth. (iv) They die much more slowly or are 
harder to eliminate at high antibiotic concentrations compared to 
non-persistent bacteria from the same population. Upon withdrawal of 
antibiotics, persistent bacteria can regrow and resensitized (Balaban 
et al., 2019; Wang and Jin, 2022). In addition to persistence, tolerance 
and resistance are distinct bacterial strategies that enable survival under 
antibiotic stress, each contributing to bacterial survival relative to sus
ceptible strains. However, they differ significantly in their dynamics 
during antibiotic killing and in their population-level characteristics. 

Fig. 1. Key features of persister bacteria and comparison with tolerant and resistant equivalents. (A) The theoretical time kill curves of bacterial populations, 
showing either an idealised pattern of susceptibility, persistence, resistance or tolerance in presence of bactericidal antibiotics. The susceptible bacteria die rapidly, 
while tolerant bacteria die more gradually. The resistant bacteria do not die but rather proliferate in presence of the antibiotics. The biphasic kill curve characteristic 
of persistence is due to the susceptible subpopulation dying quickly, while the persistent subpopulation dies more slowly. (CFU, colony forming units; MDK99, 
minimum duration (time) required to kill 99 % of bacteria). (B) The difference between persistence, tolerance, susceptibility and resistance in relation to MIC. The 
MIC is only elevated for resistant bacteria, while it remains unchanged for all of the other categories. (C) The formation of persistent bacteria. Persistent bacteria can 
enter a persistent state after being stimulated by a certain stress, such as starvation, overpopulation, acid stress, immune factors or drugs. Should the environmental 
stress subside, the persistent bacteria can regrow (left). Highlighted on right, the mechanisms leading to persistance are shown. The SOS response, the toxin-antitoxin 
(TA) system and (pp)pGpp involved in the stringent response will be triggered by the stress factors. These subsequently lead to changes in DNA replication, tran
scriptions, metabolism and the proton motive force (PMF), which leads to the persistence phenotype.
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Resistance arises from genetic mutations or acquisition of resistance 
genes, typically affecting the entire bacterial population. Resistant 
bacteria maintain active growth despite antibiotic presence and exhibit 
an elevated minimum inhibitory concentration (MIC) (Fig. 1A), with 
higher MIC values indicating stronger resistance (Brauner et al., 2016; 
Dewachter et al., 2019; Bollen et al., 2023). In contrast, persistence and 
tolerance exhibit phenotypic similarities and partially overlap, as both 
are characterized by no increase in the MIC. Tolerance is characterized 
by a uniform delay in killing across the bacterial population, leading to 
an extended minimum duration for killing 99 % of the bacteria (MDK99) 
(Fig. 1B), while the bacteria ultimately die at a slower rate (Brauner 
et al., 2016; Levin-Reisman et al., 2019). However, persistence refers to 
a small subpopulation of phenotypically distinct, non-growing bacteria 
within an otherwise susceptible clonal population. These bacteria sur
vive antibiotic treatment much longer than the majority of the popula
tion, prolonging MDK99.99, while the initial killing phase (MDK99) 
remains comparable to susceptible strains. This results in a biphasic 
killing curve (Fig. 1B), where the bulk population is rapidly eliminated, 
and a minor persister fraction survives in a dormant state 
(Levin-Reisman et al., 2019; Huemer et al., 2020; Eisenreich et al., 
2022). Summarily, resistance and tolerance are characteristics of the 
entire bacterial population, whereas persistence refers to a small sub
population within a clonal bacterial community that can survive anti
biotic exposure (Balaban et al., 2019).

2.2. Formation of persistent bacteria

There are no clear-cut causes for the formation of persistent bacteria, 
but a number of mechanisms for their formation have been identified, 
and there are complex links between them (Fig. 1C). Toxin-antitoxin 
(TA) modules play a central regulatory role in persistent bacteria for
mation, inhibiting cellular processes such as translation (Germain et al., 
2013; Winther et al., 2016), DNA metabolism (Harms et al., 2015), and 
the membrane potential (Dorr et al., 2010; Verstraeten et al., 2015). TA 
systems could be upregulated or activated by the accumulation of (pp) 
pGpp during the “stringent response” (Huemer et al., 2020), in which 
(pp)pGpp is synthesized during nutrient starvation and other stress re
sponses such as fluctuations in oxygen, changes in pH, osmotic shock, 
and temperature variations. The stringent response modulates tran
scription in order to reduce growth and secure the bacterial survival 
(Hauryliuk et al., 2015; Harms et al., 2016). Another pathway is the SOS 
response (Harms et al., 2016). The SOS response is a conserved DNA 
repair and regulatory mechanism triggered by double-strand breaks 
during replication fork stalling, replication-transcription collisions, and 
transcriptional stalling, or DNA-damaging agents such as UV irradiation, 
antibiotics, oxidants, and high external pressure, leading to the gener
ation of single-stranded DNA (ssDNA) (Baharoglu and Mazel, 2014; Zou 
et al., 2021). Additionally, quorum sensing (QS) is found to facilitate the 
formation of persistent bacteria (Fig. 1C) (Leung and Levesque, 2012; 
Maisonneuve and Gerdes, 2014; Amato and Brynildsen, 2015; Khan 
et al., 2020b; Personnic et al., 2023). Molecules such as indole and 
competence-stimulating peptide (CSP), acting as QS molecules, have 
demonstrated the ability to foster the development of persistent bacteria 
in Streptococcus pneumoniae (S. pneumoniae) (Gollan et al., 2019).

2.3. Niches of persistent bacteria

Persistent bacteria predominantly inhabit hostile environments, 
where they transition into a persistent state in response to environ
mental challenges. Accordingly, persistent bacteria can be found in 
different niches, such as liquid cultures (planktonic bacteria), biofilms, 
intracellular cavity, small community variants (SCVs), granuloma and 
abscesses (Proctor et al., 2014; Fisher et al., 2017; Peyrusson et al., 2020; 
Cronan, 2022; Masters et al., 2022; Choi et al., 2023).

2.3.1. Liquid cultures (planktonic bacteria)
Persistent bacteria can be found in liquid cultures (planktonic bac

teria) (Fig. 2A). Bacteria can enter persistence either spontaneously or in 
response to specific stimuli during their growth (Arnoldini et al., 2012). 
During the stationary phase, the primary stress encountered is nutrient 
limitation, which induces significant shifts in bacterial metabolism and 
gene expression patterns (Finkel, 2006; Lewis, 2007). Concurrently, the 
accumulation of metabolic byproducts such as organic acids leads to a 
decline in environmental pH, further impacting cellular stability and 
physiology (Sánchez-Clemente et al., 2018). As a result, the stationary 
phase typically harbors a higher proportion of persistent bacteria 
compared to the exponential growth phase. Enhanced quorum sensing 
(QS) activity during this phase may further contribute to the enrichment 
of persistent cells (Balaban et al., 2019; Mukherjee and Bassler, 2019; 
Verstraete et al., 2022; Wang and Jin, 2022). Nevertheless, it is impor
tant to note that both type I and type II persisters can be present at any 
given time within liquid cultures.

2.3.2. Biofilm
Biofilms are considered to harbor bacteria displaying both tolerance 

and persistence (Lewis, 2007; Yan and Bassler, 2019; Choi et al., 2023) 
(Fig. 2B). Bacteria situated at the periphery of the biofilm benefit from 
abundant oxygen and nutrient availability, those residing deeper within 
confront nutrient scarcities and various stressors, which would trigger a 
response from the SOS as well as the (pp)pGpp and TA systems, facili
tating bacterial entry into the persistent state (Orazi GO’Toole, 2019; 
Guo et al., 2022). Spoering et al. concluded that P. aeruginosa biofilms 
exhibit similar resistance to antibiotics and a biocide as stationary phase 
planktonic bacteria. Kline et al. emphasized that the mechanisms un
derpinning the ability of otherwise susceptible S. aureus to tolerate and 
survive antibiotic challenge may be essentially the same (Spoering and 
Lewis, 2001; Kline et al., 2016). Drescher et al. documented that 
significantly higher numbers of persistent bacteria in biofilms than 
planktonic stationary phase were found with high doses of antibiotics 
(Drescher et al., 2019). Owing to their dormant state and profound 
localization within biofilms, persistent bacteria elude detection and 
eradication, rendering biofilms a formidable impediment in bacterial 
infection eradication endeavors.

2.3.3. Intracellular bacteria and small colony variants
Intracellular bacteria play important roles in the pathogenesis of 

diverse diseases and constitute essential elements of chronic, recurrent, 
and latent infections (Feng et al., 2022) (Fig. 2C). The intracellular 
milieu is hostile, characterized by low pH, abundant reactive enzymes, 
and oxidative stress. Intracellular bacteria will adjust their strategies to 
cope with these harsh environments. By employing fluorescent reporter 
genes to monitor individual growth rates, dormant bacteria have been 
detected within intracellular infections caused by S. aureus (Garzoni and 
Kelley, 2009; Peyrusson et al., 2020), Salmonella (Claudi et al., 2014), 
Escherichia coli (E.coli) (Helaine et al., 2019), Mycobacterium tuberculosis 
(M. tuberculosis) (Manina et al., 2015) and Legionella cherrii (L. cherrii) 
(Personnic et al., 2019), exhibiting notable antibiotic tolerance over 
extended durations (Wang et al., 2023). A recent finding indicates that a 
minor subset of intracellular bacteria undergoes a transition to a 
persistent state in response to environmental pressures imposed by host 
cells. S. aureus persisters have been observed intracellularly, and their 
metabolic activity is maintained accordingly by adjusting center carbon 
metabolism (Peyrusson et al., 2020).

Additionally, SCVs, as a classical type of intracellular bacteria that 
transition into a slow-growth state, manifest sluggish growth under 
nutrient-deficient and adverse conditions. SCVs are distinguished by the 
formation of diminutive colonies, reduced metabolic activity, slow 
proliferation and diminished ATP levels (Kahl, 2014; Nasser et al., 
2020). SCVs and persistent bacteria commonly emerge from bacteria 
recuperating from intracellular environments or stress exposure. Similar 
to persisters, SCVs are capable of resuming growth post-stress cessation 
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(Helaine et al., 2014; Loss et al., 2019; Zhou et al., 2022). Investigations 
have underscored numerous metabolic resemblances between SCVs and 
persistent bacteria. It is likely that persistent bacteria are indeed present 
in SCVs, or alternatively, viewed from another standpoint, persistent 
bacteria may coexist within SCVs as a distinct subset (Vulin et al., 2018), 
but this idea needs more research and validation (Proctor et al., 2014).

2.3.4. Granuloma and abscess
Granuloma is a focal aggregate of immune cells that forms in 

response to an inflammatory stimulus, such as an infectious pathogen or 
a foreign body (Gengenbacher and Kaufmann, 2012; Nathan, 2016). 
Numerous necrotic cells are present around the granuloma and there is a 
concentration of bacteria there (Cronan, 2022). In contrast, S. aureus 
abscess communities (SAC) are the result of bacteria acting on immune 
cells, prompting them to gather to form a natural barrier in which the 
bacteria encapsulate themselves, enabling them to survive for long pe
riods of time within the soft tissues. Although the two niches by different 
mechanisms, the layer of mostly necrotic host immune cells uninten
tionally creates an additional protective barrier that prevents newly 
recruited host immune cells from penetrating the abscess and killing the 
bacteria (Fig. 2D). Under the continuous influence of host and envi
ronmental pressures, bacteria within SAC and granulomas face scarcity 
in both nutrients and oxygen, creating an environment conducive to 
their persistence rather than active replication (Cronan, 2022; Masters 
et al., 2022). To survive in SAC and granulomas, entry into a persistence 

become strategies for bacterial survival, making the formation of 
persistent bacteria in this environment (Cheng et al., 2009; Garzoni and 
Kelley, 2009; Gengenbacher and Kaufmann, 2012).

3. Strategies for removing persistent bacteria

Currently, the eradication of persistent bacteria can generally be 
divided into three broad strategies (Fig. 3). (i) Direct killing of persistent 
bacteria. This approach involves the use of novel-generation antibiotics 
and antimicrobial peptides (AMPs) as primary antibacterial agents. 
Additionally, other antimicrobial agents have been developed, which we 
refer to as “other antimicrobials”, including bactericidal agents that are 
neither antibiotics nor AMPs. In addition to these agents, other antimi
crobial strategies, such as metals, phages, photothermal therapy (PTT), 
photodynamic therapy (PDT), nitric oxide (NO) treatment and weak 
electrochemical currents are also capable of directly killing persistent 
bacteria. (ii) Drug combinations. These strategies encompass the use of 
traditional antibiotics in combination with other antibiotics or with non- 
antibiotic agents. In the case of combinations involving antibiotics and 
nonantibiotics, nonantibiotics may be utilized, for example, to awaken 
or sensitize persistent bacteria, subsequently enhancing the efficacy of 
the antibiotic. (iii) Inhibition of persistent bacteria formation. This 
strategy aims to reduce or inhibit the formation of persistent bacteria 
through pathway interference. This may be achieved by blocking bac
terial communication or inhibiting pathways such as TA systems and 

Fig. 2. Niches of persistent bacteria. Persistent bacteria are induced in harsh environments that cause the bacteria to become dormant. (A) Liquid cultures 
(planktonic bacteria). When bacterial growth, here measured in CFU over time, reaches a stable period in the stationary phase, it will face a large number of bacteria, 
low nutrition and various acidic anoxic environments, which will stimulate bacteria to enter a persistent state. (B) Biofilm. Biofilm interiors are typically hypoxic, low 
in pH, and nutrient poor, and present a complex microenvironment including persistent bacteria. (C) Intracellular persistent bacteria and SCVs. The presence of a 
large amount of dissolved oxygen, active enzymes, an acid environment and various organelles in the host cell will lead to a reduction of bacterial metabolism and 
induction of persistence. SCV is a subgroup of slow-growing bacteria that go dormant during the growth phase and under harsh conditions and the same dormant 
stress state as persistent bacteria under harsh conditions. (D) Granuloma and abscess. Bacteria in granulomas and abscesses are surrounded by immune cells in a 
largely nutrient-poor and anaerobic state, and are surrounded by immune cells in an intricate microenvironment that imposes a variety of environmental constraints 
on bacterial growth, promotes bacterial dormancy, and favors the emergence of persistent bacteria.
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(pp)pGpp, which are involved in persister formation. These strategies 
are not necessarily strictly independent, and it is possible that multiple 
mechanisms can be combined.

3.1. Killing persistent bacteria directly

Direct killing of persistent bacteria requires rapid and intense dam
age on the bacterial components such as cell wall, membrane, nucleic 
acid and proteins etc. (Liu et al., 2023) (Fig. 4).

3.1.1. Novel-generation antibiotics and other antimicrobials
Targeting the bacterial cell membrane is an effective strategy, as it 

not only disrupts the membrane directly but also alters its permeability, 
facilitating the enhanced uptake of other drugs. Antibiotics like poly
myxin B and colistin, for example, target the negatively charged lipo
polysaccharides and phospholipids on the cytoplasmic membrane, 
causing membrane disruption and lysis in persistent bacteria (Cui et al., 
2016; Mohiuddin et al., 2020; Sabnis et al., 2021). Some novel 
small-molecule antimicrobials, such as the phenethylamine derivative 
SPI009 (Liebens et al., 2017), peroxisome proliferator-activated recep
tor gamma activator nTZDpa (Kim et al., 2018b), aryl-alkyl-lysines 
structural compound NCK-10 (Ghosh et al., 2016), retinoic acid ana
logs CD437 and CD1530 (Kim et al., 2018c), and the potent indigoid 
NPIMA (Song et al., 2019), disrupt the phospholipid bilayer and exert a 
strong osmotic effect that kills persistent bacteria. The nitrofuran 
IITR06144 enhances the bactericidal activity of aminoglycosides by 
disrupting membrane permeability and inducing DNA damage (Bhando 
et al., 2020). Mitomycin C (Kwan et al., 2015) and cisplatin (Chowdhury 
et al., 2016) have been shown to induce DNA crosslinking, leading to the 
eradication of persistent bacteria.

The natural product aureomycin A (ChryA) competitively inhibits 
GlmU and DapD enzymes, targeting the synthesis of cell wall peptido
glycan precursors and lysine in S. aureus persisters (Jia et al., 2023). 
Additionally, several natural extracts have shown potential in targeting 

recalcitrant bacteria, though their mechanisms still require further 
exploration. For example, two natural compounds, 4,6-dibromo-2-(2′, 
4′-dibromophenoxy) phenol and 3,4,6-tribromo-2-(2′,4′-dibromophe
noxy) phenol demonstrate bactericidal effects against 
Methicillin-resistant S. aureus (MRSA) and P. aeruginosa persistent bac
teria (van Geelen et al., 2020). Squalamine exhibits the ability to erad
icate persistent and VBNC bacteria of Acinetobacter baumannii 
(A. baumannii) (Nicol et al., 2019).

3.1.2. AMPs (antimicrobial peptides)
AMPs are small proteins with potent antibacterial, antiviral, and 

antifungal activity (Lazzaro et al., 2020). AMPs exhibit good scavenging 
ability against persistent bacteria. 2D-24 is a dendrimeric peptide 
composed of varying numbers of arginine and tryptophan residues. This 
peptide effectively targets persistent bacteria by disrupting bacterial 
membranes and potentiating the activity of antibiotics such as cipro
floxacin, tetracycline, and carbenicillin (Bahar et al., 2015b). Similarly, 
a penetrating peptide containing different arginine and tryptophan in 
the AMP framework based on the 1,3,5-triazine structure, along with its 
derivative TN-5, has proven effective in eliminating persistent E. coli 
(Chen et al., 2011; Bahar et al., 2015a). Additionally, the 
lysine-containing AMP ZY4, reported by Mwangi et al., demonstrates 
bactericidal activity against biofilms and persistent A. baumannii by 
permeabilizing bacterial membranes (Mwangi et al., 2019). An 
imidazole-cation AMP has been designed for the targeted removal of 
persistent MRSA and biofilm (Basak et al., 2017). Liu et al. developed 
various host defense peptides and peptide-like polymers, utilizing 
ring-opening polymerization, for the effective removal of persistent 
MRSA (Zhou et al., 2020; Xie et al., 2021).

The acyldepsipeptide ADEP4 activates bacterial caseinolytic pepti
dase P (ClpP), resulting in nonspecific protease activity that targets over 
400 of intracellular proteins, thereby killing persistent bacteria. When 
combined with gentamicin, it demonstrates potent activity against 
persistent bacteria, making it an effective agent for eradicating persis
tent bacterial infections (Conlon et al., 2013). Lassomycin is a cyclic 
peptide synthesized via ribosomal pathways that exhibits activity 
against persistent M. tuberculosis by targeting the ATP-dependent pro
tease ClpC1P1P2 (Gavrish et al., 2014). Furthermore, a 
sequence-specific pentamer, known as TM5, inhibits cytokine produc
tion induced by Gram-negative bacterial lipopolysaccharides, demon
strating efficacy against planktonic persistent bacteria and exerting 
bactericidal effects on biofilms formed by both Gram-negative and 
Gram-positive bacteria (Lin et al., 2022).

Direct conjugation of commonly used antibiotics with antimicrobial 
peptides has emerged as a promising strategy in drug development. For 
instance, Mohamed et al. (2017) synthesized a kanamycin-peptide 
conjugate (P14KanS) by coupling kanamycin with an antimicrobial 
peptide (P14LRR). Mechanistic studies revealed that P14KanS exerts its 
antimicrobial action through selective disruption of the bacterial 
membrane (2017). Similarly, conjugates of vancomycin with innate 
defense regulator (V-IDR1018) (Etayash et al., 2021) and 
vancomycin-D-arginine (V-r8) (Antonoplis et al., 2018) have been 
developed to clear biofilms of MRSA and persistent bacteria, respec
tively, by inducing cytokine production and enhancing transporter ac
tivity. These conjugates exhibit higher clearance efficiency compared to 
vancomycin alone.

3.1.3. Phage
One of the key advantages of phage therapy over broad-spectrum 

antibiotics is its high specificity for target bacterial pathogens, without 
causing adverse effects on the host or its symbiotic microbiota, thereby 
minimizing secondary impacts (Sarker et al., 2016). Phages exert their 
bactericidal action by ultimately lysing bacteria (Pacios et al., 2020). 
Phage-derived enzymes, such as Art-175 (Briers et al., 2014), LysH5 
(Gutierrez et al., 2014), CF-301(Schuch et al., 2013) CHAP(K) (Fenton 
et al., 2013), and PlyC (Shen et al., 2013) have demonstrated 

Fig. 3. Three antimicrobial strategies targeting persistent bacteria. (A) 
Direct killing of persistent bacteria. This approach involves the use of novel- 
generation antibiotics, AMPs, other antimicrobial agents, metals, phages, pho
totherapies, NO treatment and weak electrochemical currents. (B) Drug com
binations. These strategies use combinations of conventional antibiotics and/or 
nonantibiotics agents to sensitize persisters, followed by killing them. (C) 
Inhibiting the formation of persistent bacteria. These strategies aim to prevent 
the emergence of persisters by blocking bacterial communication or inhibiting 
pathways such as TA and (pp)pGpp.
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effectiveness in inhibiting and killing persistent S. aureus, along with 
potent anti-biofilm activity. The S. aureus-specific phage Sb-1 can 
degrade the MRSA polysaccharide matrix and target persistent bacteria, 
making it suitable for treating biofilm-related infections (Tkhilaishvili 
et al., 2018). Recently, phage-antibiotic combination therapy has been 
proposed as a strategy to eradicate persistent bacteria and eliminate 
biofilms on medical devices, prosthetic joints, etc. (Kebriaei et al., 2020; 
Fedorov et al., 2023; Osman et al., 2023). For example, Paride, a newly 
isolated P. aeruginosa phage, can directly replicate and induce lysis of 
persisters. When combined with meropenem, Paride can eradicate 
persistent bacteria in vitro and reduce bacterial infection in mouse tissue 
(Maffei et al., 2024), demonstrating strong targeting and scavenging 
capabilities.

3.1.4. Metals
Metals offer a promising strategy against bacteria, including biofilms 

and persisters by directly damaging membrane surfaces, altering mem
brane permeability, and disrupting DNA and iron metabolism 
(Basavegowda and Baek, 2021; Han et al., 2022). Copper enhances the 
killing of persistent bacteria under anaerobic conditions by disrupting 
proteins involved in bacterial respiration. The primary cause of copper 
toxicity is the disruption of Fe-S protein clusters, an oxygen-independent 
process (Moreira Martins et al., 2020). Magnesium hydroxide nano
particles, due to their small size, significantly kill persistent E.coli 
(Nakamura et al., 2021).Caffeine-coated gold nanoparticles exhibit 
multifaceted characteristics, including the ability to inhibit biofilm 

formation, disperse mature biofilms, and eradicate S. aureus, 
L. monocytogene, P. aeruginosa and E. coli persisters (Khan et al., 2021). 
Gold nanoclusters coated with adenosine triphosphate (AuNC@ATP) 
kill persistent bacteria by exploiting their low metabolic activity and 
increasing membrane permeability (Bekale et al., 2023).

3.1.5. Other direct killing strategies
Emerging physical strategies, including phototherapies (PDT and 

PTT), NO treatment and week electrochemical currents, show consid
erable promise in eradicating persistent bacteria. In PTT therapy, blue 
light has been shown to disrupt proton flux across the inner membrane, 
thereby affecting the viability of persistent E.coli (Abana et al., 2017). 
Simultaneously, Xu et al. developed a novel multimodal antibacterial 
platform integrating both PDT and PTT, which not only eradicates 
pathogenic bacteria but also visualize ROS generation and promotes 
wound healing (He et al., 2024b). The NO treatment strategy effectively 
targets Type I persistent bacteria during the stationary phase by 
reducing protein and RNA degradation in these persisters (Orman and 
Brynildsen, 2016). Week electrochemical currents have been shown to 
reduce persistent bacteria by increasing ROS production, although the 
exact mechanisms require further investigation (Niepa et al., 2012; 
Schmidt-Malan et al., 2015; Voegele et al., 2015). Similarly, sonody
namic and magnetic therapies (Cheeseman et al., 2020; Wu et al., 2023; 
He et al., 2024a), currently under development, offer precise and effi
cient alternatives, further expanding the growing arsenal of advanced 
modalities for tackling persistent bacterial infections.

Fig. 4. Strategies for direct removal of persistent bacteria. (A) Schematic diagram illustrating the direct killing of persistent bacteria. (B) Classification by 
mechanism of action. These mechanisms listed may not be mutually exclusive, and multiple mechanisms could be combined. (i) Disturbing bacterial membrane. (ii) 
Destroying cell wall. (iii) Inhibiting transcription/replication. (iv) Inhibiting protein synthesis. (v) Generating ROS.
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3.2. Drug combination

Persistent bacteria pose a significant challenge to the effectiveness of 
single antibiotics, which is why strategies for combined clearance of 
persistent bacteria through multiple routes have emerged. These stra
tegies include the combinations of antibiotics and nonantibiotics, as well 
as combinations of conventional antibiotics. Such approaches involve 
multiple mechanisms of action, which may include the use of an auxil
iary agent that lacks intrinsic antimicrobial activity but enhances anti
biotic efficacy, or the combination of multiple antibiotics with 
synergistic modes of action. A key consideration when employing 
combination strategies is whether they lead to beneficial synergistic 
effects or potential antagonistic effects that could undermine the effi
cacy of the antibiotics. Harnessing the synergistic potential of these 
combinations is crucial for achieving potent eradication of persistent 
bacteria. Furthermore, combining different treatments can also help 
reduce the development of antibiotic resistance (Fig. 5A).

3.2.1. Combinations of conventional antibiotics
Combining multiple antibiotics provides an effective approach for 

eliminating persistent bacteria (Chung and Ko, 2019). The available 
antibiotics target various cellular components, including but not limited 

to: disrupting cell wall integrity (e.g., β-lactams and glycopeptides), 
disrupting the cell membrane (lipopeptides), inhibiting protein synthe
sis (chloramphenicol, macrolides, tetracyclines), blocking transcription 
(rifampicin), and impeding DNA synthesis (fluoroquinolones) (131) 
(Fig. 5B).

Doxycycline, combined with daptomycin or ceftriaxone, demon
strates efficacy in treating persistent Borrelia burgdorferi (B. burgdorferi) 
bacteria in Lyme disease (Defraine et al., 2018). Similarly, daptomycin 
combined with tobramycin (Lechner et al., 2012) or gentamicin (Baltch 
et al., 2008) shows killing efficacy against S. aureus persisters. Another 
example includes tobramycin combined with colistin or ciprofloxacin, 
which can eradicate persistent bacteria during both exponential and 
stationary phases of A. baumannii growth. Down-regulation of genes 
encoding universal stress proteins and efflux pumps in response to 
tobramycin and colistin reduces antibiotic efflux, thereby enhancing 
bacterial clearance (Kashyap et al., 2021). Colistin increases membrane 
permeability, promotes ROS production, and facilitates the entry of 
antibiotics, such as amikacin (Chung and Ko, 2019), tobramycin 
(Kashyap et al., 2021) gentamicin (Cui et al., 2016; Zheng et al., 2020) 
and ofloxacin (Cui et al., 2016; Zheng et al., 2020). Combining pheno
thiazines with ofloxacin disrupts persistent bacteria by inhibiting energy 
metabolism and proton gradient maintenance (Mohiuddin et al., 2022).

Fig. 5. Drug combination strategies for persistent bacteria clearance. (A) Schematic diagram of drug combination. (B) Killing mechanism. (i) Combination of 
antibiotics. Multi-antibiotic combinations can achieve persistent bacteria clearance by targeting different bacterial structures and mechanisms of action. Their 
synergistic effects significantly enhance the eradication of persisters. (ii) Combination of antibiotics and nonantibiotics. Removing environmental stress by increasing 
nutrient supply, raising oxygen levels or optimizing pH etc. can ’awaken’ persistent bacteria. This awakening reverse persistence by adjusting the levels of (pp)pGpp 
and TA systems, reactivating bacterial metabolism, etc., thereby making them more susceptible to treatments. Consequently, drug combination strategies kill 
persistent bacteria by different mechanisms of action.
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3.2.2. Combinations of antibiotics and nonantibiotics
Nonantibiotics that modify the metabolism of persistent bacteria, 

such as altering glycolysis, boosting the tricarboxylic acid cycle (TCA), 
and up-regulating various other pathways (e.g., ROS and reactive ni
trogen species), are used as adjuncts to enhance antibiotic killing. These 
nonantibiotics include amino acids, sugars and other metabolites. 
Additionally, nonantibiotics that alter the external environment can 
promote the awakening of persistent bacteria. These agents strengthen 
the bacterial PMF, facilitate antibiotic internalization, and enhance 
bacterial susceptibility to antibiotics (Meylan et al., 2017; Su et al., 
2018; Liu et al., 2020a; MacLean et al., 2023) (Fig. 5B).

For instance, combining sugars such as mannitol, fructose, and 
glucose with the aminoglycoside kanamycin, significantly reduces E. coli 
and S. aureus persisters by altering bacterial metabolism, increasing 
PMF, and enhancing aminoglycosides uptake (Allison et al., 2011). The 
combination of the antibiotic-antimicrobial peptide Nisin was effective 
in reducing the formation of Listeria monocytogenes (L. monocytogenes) 
persistent (Narimisa et al., 2021), while combining Nisin with ampicillin 
successfully killed Salmonella persisters under mannose conditions 
(Rishi et al., 2018). Amino acids, similar to sugars, also regulate bac
terial metabolism (Verstraete et al., 2022). Proline has been reported to 
reawaken persistent P. aeruginosa, while exogenous alanine can promote 
the resensitization of E. coli to kanamycin (Peng et al., 2015; Zhang 
et al., 2019). Exposure to acidic pH triggers persistence, but the addition 
of basic amino acids, such as L-arginine, enhances PMF and sensitizes 
bacteria to kanamycin by modifying the membrane pH gradient 
(Lebeaux et al., 2014; Verstraete et al., 2022). Similarly, L-serine (Duan 
et al., 2016), L-alanine, and cysteine (Liu et al., 2020b; Yamasaki et al., 
2020; Zhen et al., 2020) enhance the efficacy of fluoroquinolones 
against E. coli and M. tuberculosis by boosting endogenous ROS pro
duction. In addition, exogenous adenosine can synergize with antibiotics 
by altering nucleotide metabolic pathways and reducing (pp)pGpp 
accumulation, as well as promoting ATP synthesis to reverse bacterial 
persistence (Kitzenberg et al., 2022; Li et al., 2023).

Beyond metabolism enhancement via metabolites, single chemical 
compounds like C10 (Kim et al., 2011) and the fatty acid signaling 
molecule cis-2-decenoic acid(Marques et al., 2014) have been shown to 
transition persistent P. aeruginosa and E. coli from a dormant state to a 
metabolically active state. The combination of nTZDpa and amino
glycosides effectively kills persistent bacteria, while dimercaptan com
bined with gentamicin eradicates S. aureus in vitro and significantly 
reducing bacterial load in a mouse model of chronic MRSA infection 
(Kim et al., 2019). Additionally, Zhao et al. suggested that freezing 
techniques enhance aminoglycoside uptake through the mechanosensi
tive ion channel MscL, independent of PMF (Zhao et al., 2020). Simi
larly, hypoionic shock also mediated by mechanosensitive ion channels, 
facilitates aminoglycoside influx to eliminate persistent bacteria 
(Jiafeng et al., 2015).

In addition, drug delivery systems (DDSs) enable precise delivery of 
antibiotics, increasing antibiotic internalization and altering the 
external environment of the bacteria, thereby enhancing antibiotic ef
ficacy in removing persistent bacteria (Ashique et al., 2021; Cai et al., 
2022). For example, a maltohexaose-modified catalase-gallium nano
system awakens dormant P. aeruginosa biofilms by reconciling the oxy
gen gradient, boosting metabolism, and increasing nutritional iron 
demand (Jian He a, 2024). Gold nanoparticles with NO photothermal 
release also exhibit synergistic biofilm-clearing ability (Tang et al., 
2021). Additionally, gluconic acid-chitosan nanoparticles show anti
bacterial activity against persistent bacteria and biofilms (Khan et al., 
2020a), while poly(amino acid)-based nanoparticles specifically target 
dormant intracellular bacteria, offering a novel approach for intracel
lular bacterial elimination (Feng et al., 2022)

3.3. Inhibiting the formation of persistent bacteria

The formation of persistent bacteria is regulated by various signals, 

and inhibiting their generation by disrupting specific pathways has 
become a viable strategy. Approaches such as blocking QS, inhibiting 
the expression of (pp)pGpp, and targeting toxin-antitoxin (TA) systems 
have been developed (Fig. 6).

Relacin, a novel antibacterial agent, inhibits (pp)pGpp synthesis 
mediated by RelA, disrupting the transition of several Gram-positive 
bacteria into a stable growth state and leading to bacterial death, thus 
inhibiting the generation of persistent bacteria (Wexselblatt et al., 
2012). TA systems play a central role in persistence, making them 
attractive drug targets. Inhibiting toxins can prevent growth arrest, 
while promoting their activity may drive persisters out of dormancy. For 
example, HipA, the first identified toxin linked to E. coli persistence, can 
be inhibited by compounds identified through structure-based virtual 
screening, significantly reducing persistence (Li et al., 2016). The Lon 
protease activates the TA system by degrading antitoxins. Inhibition of 
Lon protease activity can prevent toxin release, thereby blocking TA 
system-mediated entry of bacteria into the persister state (Harms et al., 
2016; Michiels et al., 2016). Diosmin and nafcillin have been identified 
as potential inhibitors of Lon protease, capable of effectively down
grading the expression of type II TA system genes, thus preventing the 
formation of persisters (Narimisa et al., 2024). Similarly, the mazEF TA 
system is crucial for persistence; its overexpression induces persister 
formation, but direct interaction with rifampicin can inhibit this process 
(Alexander et al., 2020). In addition，disrupting folate metabolism can 
inhibit the generation of persistent bacteria (Morgan et al., 2018).

Bacteria are not isolated entities; they communicate via QS signaling 
molecules, making QS pathways effective targets for combating persis
tent bacteria in biofilms (Moker et al., 2010; Leung and Levesque, 2012). 
Strategies include degrading QS signaling molecules, inhibiting their 
production pathways, blocking receptor interactions, disrupting mem
brane transport, or capturing signaling molecules (Khan et al., 2020b). 
For example, BF8 is a QS inhibitor of E. coli, which can sensitize bacteria 
to ofloxacin by disrupting connections between biofilms if added 
exogenously(Pan et al., 2013). Similarly, QS-regulated phenol-soluble 
modulins decrease persistent bacteria number in S. aureus (Bojer, 2018).

4. Concluding remarks

In this review, we provided the current definition of bacterial 
persistence and summarized the mechanisms behind persisters forma
tion, as well as the various niches of bacterial persistence encountered in 
clinical practice. We have also outlined comprehensively strategies for 
eradicating persister bacteria, including direct killing via novel- 
generation antibiotics, AMPs, other antimicrobial agents and strate
gies, drug combinations of conventional antibiotics and/or non
antibiotics, and inhibition of persister formation. These insights 
contribute to a broader understanding of persister formation and elim
ination, facilitating a deeper comprehension of their underlying mech
anisms and potential therapeutic strategies.

However, many unresolved questions regarding the development 
and management of persister bacteria remain, highlighting the need for 
further investigation.

First, there is a lack of effective detection methods and treatment 
evaluations for persistent bacteria in infected tissues. Persistent bacteria 
often exist in traces across various tissue types and depths, making on- 
site, trace-level detection challenging. This gap significantly hampers 
the ability to assess drug efficacy and monitor patient recovery. Addi
tionally, although several in vitro antibiotic induction models have been 
developed, their use has been controversial due to the considerable 
variability in the metabolic responses of persistent bacteria induced by 
different antibiotics. Constructing in vivo models of persistent bacterial 
infections is complicated by factors such as the deep penetration of 
persisters, the host microenvironment and immune response. Estab
lishing reliable mechanisms for the induction, detection, and evaluation 
of persistent bacteria will be critical in advancing efforts to eradicate 
bacterial infections.

Z. Yin et al.                                                                                                                                                                                                                                      Microbiological Research 297 (2025) 128189 

8 



Second, the effect of the persister niches on drug efficacy has been 
overlooked. As mentioned above, persistent bacteria typically reside in 
deep tissues within a complex microenvironment, requiring drugs to 
penetrate tissue barriers and reach bacterial loci. This presents a sig
nificant challenge for bactericidal efficacy, as the ability of a drug may 
vary substantially when treating persisters in different niches. Further
more, the microenvironment strongly influences the state of persistent 
bacteria. For example, hypoxic conditions may shift persistent bacteria 
from aerobic respiration to fermentation, which may drastically alter 
their susceptibility to different drugs. These factors highlight the need 
for further research on the impact of persister niches on the effectiveness 
of therapies targeting persister bacteria.
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