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ABSTRACT

Persistent bacteria (persisters) are phenotypic variants that emerge either randomly or in response to a range of
adverse environmental conditions. Persistence represents a state whereby a subpopulation of microorganisms
can spontaneously enter a "dormant” state in response to environmental factors, while simultaneously exhibiting
elevated tolerance to antimicrobial agents. This review provides the current definition of bacterial persistence
and summarizes the mechanisms of persisters formation as well as the various niches of bacterial persistence
encountered in clinical practice. Strategies targeting persisters are outlined, including but not limited to direct
killing, awakening of persistent bacteria, combined clearance, and inhibition of persistence formation, and we
conclude by proposing challenges and solutions for addressing bacterial persistence in current clinical practice.

1. Introduction

Bacterial infections have long stood as a primary threat to human
health, with the discovery and translation of antibiotic agents in the last
century being a major contributor to increased life expectancy. How-
ever, the widespread use of antibiotics has led to the emergence of many
drug-tolerant bacteria and a looming global crisis. One of the key con-
tributors to antibiotic treatment failure and the recurrence of infections
is bacterial persistence (Fauvart et al., 2011; Kint et al., 2012). These
surviving bacteria, termed persistent bacteria, are a particular subpop-
ulation of bacteria that exhibit characteristics that make them distinct
from the more commonly studied resistant bacteria. Upon entering a
"dormant" state, persistent bacteria become refractory to antibiotic
treatment, but may resume growth under favorable conditions, thus
perpetuating recurrent bacterial infections (La Rosa et al., 2022;
Michaux et al., 2022). Although studying persister bacteria is chal-
lenging, as outlined below, there is a widespread acknowledgement of
the remarkable resilience exhibited by persistent bacteria, and that they
present a formidable challenge for successful eradication.

There have been several review articles addressing the mechanism of
persistent bacteria formation. For instance, Fisher et al. discuss the
formation and regrowth mechanisms of persister in bacterial persistent
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infections (Fisher et al., 2017). Irving et al. review recent findings on the
physiological roles of guanosine tetraphosphate and guanosine penta-
phosphate ((pp)pGpp) in bacterial pathogenesis (Irving et al., 2021). Niu
et al. provide a comprehensive update on the mechanisms of persisters
formation (Niu et al., 2024). The formation of persistent bacteria is
highly complex, resulting from a combination of multiple factors.
Although existing reviews on the treatment of persisters have been
summarized, they either cover extended periods without incorporating
the latest research advancements, or lack a comprehensiveness overview
of current treatment approaches for bacterial persisters. Moreover, the
existing niches of bacterial persistence are rarely discussed, which
significantly impacts the development and effectiveness of
persister-targeted treatments. Given this context, the objective of this
review is to provide the state of the art in our understanding of the
biology of persistent bacteria, including mechanisms of formation and
survival, as well as classification schemes introduced to aid definition.
Furthermore, we will describe eradication strategies specifically tar-
geting persistent bacteria, presented based on mechanism of action.
These strategies encompass a range of approaches, including but not
limited to direct killing, awakening of persistent bacteria, combination
therapy, and inhibition of persistence formation. Through this system-
atic presentation of underlying biology and targeted strategies, we aim

E-mail addresses: fintan.moriarty@aofoundation.org (T.F. Moriarty), ligf@mail.buct.edu.cn (G. Li), wangxing@mail.buct.edu.cn (X. Wang).

https://doi.org/10.1016/j.micres.2025.128189

Received 12 March 2025; Received in revised form 18 April 2025; Accepted 18 April 2025

Available online 23 April 2025

0944-5013/© 2025 Elsevier GmbH. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:fintan.moriarty@aofoundation.org
mailto:ligf@mail.buct.edu.cn
mailto:wangxing@mail.buct.edu.cn
www.sciencedirect.com/science/journal/09445013
https://www.elsevier.com/locate/micres
https://doi.org/10.1016/j.micres.2025.128189
https://doi.org/10.1016/j.micres.2025.128189

Z. Yin et al.

to identify future research directions that may in future provide
improved treatment success for this highly relevant clinical problem.

2. Persistent bacteria
2.1. What are persistent bacteria?

Persistent bacteria are phenotypic variants that emerge either
randomly or in response to a range of adverse environmental conditions
within a bacterial population (Lewis, 2007; Fisher et al., 2017; Bollen
et al., 2023). These bacteria can be classified into two types based on
their origin. Environmentally triggered persistence is classified as Type I
persistent bacteria, which primarily result from stressors such as
nutrient limitation, antibiotic exposure, oxidative stress, and extreme
pH (Helaine et al., 2014). In contrast, Type II persistent bacteria arise
randomly. This type of persistence is less prevalent, comprising a smaller
population that is frequently challenging to differentiate from type I
persistent bacteria (Wang and Jin, 2022). Besides, it has been proposed
that a hierarchy exists within the persister continuum, where some
bacteria exhibit a high level of persistence, referred to as “deep persis-
tence”, while others display weaker persistence capacity, termed
“shallow persistence” (Zhang, 2014; Pu et al., 2019). Notably, bacteria
in a state of deep persistence may transition into the viable but
non-culturable (VBNC) state under certain conditions. VBNC bacteria
are unable to regrow on standard laboratory media that would otherwise
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support their proliferation. Instead, they require specific environmental
triggers to revert to an antibiotic-sensitive, actively growing state
(Lewis, 2007; Ayrapetyan et al., 2018; Kim et al., 2018a). Protein ag-
gregation has been implicated in the transition between persistence and
the VBNC state. Overexpression of ObgE has been shown to accelerate
entry into persistence, whereas deletion of the dnaK gene promotes
protein aggregation, reduces the number of persisters, and increases the
proportion of VBNC bacteria (Dewachter et al., 2021; Bollen et al.,
2025).

The fundamental characteristics of persistent bacteria have been
well-established (Fisher et al., 2017; Balaban et al., 2019; Wainwright
et al., 2021). (i) Persistent bacteria exist within the population at
exceedingly low frequencies, typically comprising less than 0.1 % of the
total population. (ii) Bacterial persistence arises in response to antibiotic
or environmental stressors. (iii) Persistent bacteria are kept in a dormant
state by adjusting carbon metabolism and energy changes, resulting in
very slow and low-profile growth. (iv) They die much more slowly or are
harder to eliminate at high antibiotic concentrations compared to
non-persistent bacteria from the same population. Upon withdrawal of
antibiotics, persistent bacteria can regrow and resensitized (Balaban
et al., 2019; Wang and Jin, 2022). In addition to persistence, tolerance
and resistance are distinct bacterial strategies that enable survival under
antibiotic stress, each contributing to bacterial survival relative to sus-
ceptible strains. However, they differ significantly in their dynamics
during antibiotic killing and in their population-level characteristics.
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Fig. 1. Key features of persister bacteria and comparison with tolerant and resistant equivalents. (A) The theoretical time kill curves of bacterial populations,
showing either an idealised pattern of susceptibility, persistence, resistance or tolerance in presence of bactericidal antibiotics. The susceptible bacteria die rapidly,
while tolerant bacteria die more gradually. The resistant bacteria do not die but rather proliferate in presence of the antibiotics. The biphasic kill curve characteristic
of persistence is due to the susceptible subpopulation dying quickly, while the persistent subpopulation dies more slowly. (CFU, colony forming units; MDKgo,
minimum duration (time) required to kill 99 % of bacteria). (B) The difference between persistence, tolerance, susceptibility and resistance in relation to MIC. The
MIC is only elevated for resistant bacteria, while it remains unchanged for all of the other categories. (C) The formation of persistent bacteria. Persistent bacteria can
enter a persistent state after being stimulated by a certain stress, such as starvation, overpopulation, acid stress, immune factors or drugs. Should the environmental
stress subside, the persistent bacteria can regrow (left). Highlighted on right, the mechanisms leading to persistance are shown. The SOS response, the toxin-antitoxin
(TA) system and (pp)pGpp involved in the stringent response will be triggered by the stress factors. These subsequently lead to changes in DNA replication, tran-
scriptions, metabolism and the proton motive force (PMF), which leads to the persistence phenotype.
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Resistance arises from genetic mutations or acquisition of resistance
genes, typically affecting the entire bacterial population. Resistant
bacteria maintain active growth despite antibiotic presence and exhibit
an elevated minimum inhibitory concentration (MIC) (Fig. 1A), with
higher MIC values indicating stronger resistance (Brauner et al., 2016;
Dewachter et al., 2019; Bollen et al., 2023). In contrast, persistence and
tolerance exhibit phenotypic similarities and partially overlap, as both
are characterized by no increase in the MIC. Tolerance is characterized
by a uniform delay in killing across the bacterial population, leading to
an extended minimum duration for killing 99 % of the bacteria (MDKgg)
(Fig. 1B), while the bacteria ultimately die at a slower rate (Brauner
et al., 2016; Levin-Reisman et al., 2019). However, persistence refers to
a small subpopulation of phenotypically distinct, non-growing bacteria
within an otherwise susceptible clonal population. These bacteria sur-
vive antibiotic treatment much longer than the majority of the popula-
tion, prolonging MDKgg g9, while the initial killing phase (MDKgg)
remains comparable to susceptible strains. This results in a biphasic
killing curve (Fig. 1B), where the bulk population is rapidly eliminated,
and a minor persister fraction survives in a dormant state
(Levin-Reisman et al., 2019; Huemer et al., 2020; Eisenreich et al.,
2022). Summarily, resistance and tolerance are characteristics of the
entire bacterial population, whereas persistence refers to a small sub-
population within a clonal bacterial community that can survive anti-
biotic exposure (Balaban et al., 2019).

2.2. Formation of persistent bacteria

There are no clear-cut causes for the formation of persistent bacteria,
but a number of mechanisms for their formation have been identified,
and there are complex links between them (Fig. 1C). Toxin-antitoxin
(TA) modules play a central regulatory role in persistent bacteria for-
mation, inhibiting cellular processes such as translation (Germain et al.,
2013; Winther et al., 2016), DNA metabolism (Harms et al., 2015), and
the membrane potential (Dorr et al., 2010; Verstraeten et al., 2015). TA
systems could be upregulated or activated by the accumulation of (pp)
pGpp during the “stringent response” (Huemer et al., 2020), in which
(pp)pGpp is synthesized during nutrient starvation and other stress re-
sponses such as fluctuations in oxygen, changes in pH, osmotic shock,
and temperature variations. The stringent response modulates tran-
scription in order to reduce growth and secure the bacterial survival
(Hauryliuk et al., 2015; Harms et al., 2016). Another pathway is the SOS
response (Harms et al., 2016). The SOS response is a conserved DNA
repair and regulatory mechanism triggered by double-strand breaks
during replication fork stalling, replication-transcription collisions, and
transcriptional stalling, or DNA-damaging agents such as UV irradiation,
antibiotics, oxidants, and high external pressure, leading to the gener-
ation of single-stranded DNA (ssDNA) (Baharoglu and Mazel, 2014; Zou
etal., 2021). Additionally, quorum sensing (QS) is found to facilitate the
formation of persistent bacteria (Fig. 1C) (Leung and Levesque, 2012;
Maisonneuve and Gerdes, 2014; Amato and Brynildsen, 2015; Khan
et al., 2020b; Personnic et al., 2023). Molecules such as indole and
competence-stimulating peptide (CSP), acting as QS molecules, have
demonstrated the ability to foster the development of persistent bacteria
in Streptococcus pneumoniae (S. pneumoniae) (Gollan et al., 2019).

2.3. Niches of persistent bacteria

Persistent bacteria predominantly inhabit hostile environments,
where they transition into a persistent state in response to environ-
mental challenges. Accordingly, persistent bacteria can be found in
different niches, such as liquid cultures (planktonic bacteria), biofilms,
intracellular cavity, small community variants (SCVs), granuloma and
abscesses (Proctor et al., 2014; Fisher et al., 2017; Peyrusson et al., 2020;
Cronan, 2022; Masters et al., 2022; Choi et al., 2023).
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2.3.1. Liquid cultures (planktonic bacteria)

Persistent bacteria can be found in liquid cultures (planktonic bac-
teria) (Fig. 2A). Bacteria can enter persistence either spontaneously or in
response to specific stimuli during their growth (Arnoldini et al., 2012).
During the stationary phase, the primary stress encountered is nutrient
limitation, which induces significant shifts in bacterial metabolism and
gene expression patterns (Finkel, 2006; Lewis, 2007). Concurrently, the
accumulation of metabolic byproducts such as organic acids leads to a
decline in environmental pH, further impacting cellular stability and
physiology (Sanchez-Clemente et al., 2018). As a result, the stationary
phase typically harbors a higher proportion of persistent bacteria
compared to the exponential growth phase. Enhanced quorum sensing
(QS) activity during this phase may further contribute to the enrichment
of persistent cells (Balaban et al., 2019; Mukherjee and Bassler, 2019;
Verstraete et al., 2022; Wang and Jin, 2022). Nevertheless, it is impor-
tant to note that both type I and type II persisters can be present at any
given time within liquid cultures.

2.3.2. Biofilm

Biofilms are considered to harbor bacteria displaying both tolerance
and persistence (Lewis, 2007; Yan and Bassler, 2019; Choi et al., 2023)
(Fig. 2B). Bacteria situated at the periphery of the biofilm benefit from
abundant oxygen and nutrient availability, those residing deeper within
confront nutrient scarcities and various stressors, which would trigger a
response from the SOS as well as the (pp)pGpp and TA systems, facili-
tating bacterial entry into the persistent state (Orazi GO’ Toole, 2019;
Guo et al., 2022). Spoering et al. concluded that P. aeruginosa biofilms
exhibit similar resistance to antibiotics and a biocide as stationary phase
planktonic bacteria. Kline et al. emphasized that the mechanisms un-
derpinning the ability of otherwise susceptible S. aureus to tolerate and
survive antibiotic challenge may be essentially the same (Spoering and
Lewis, 2001; Kline et al., 2016). Drescher et al. documented that
significantly higher numbers of persistent bacteria in biofilms than
planktonic stationary phase were found with high doses of antibiotics
(Drescher et al., 2019). Owing to their dormant state and profound
localization within biofilms, persistent bacteria elude detection and
eradication, rendering biofilms a formidable impediment in bacterial
infection eradication endeavors.

2.3.3. Intracellular bacteria and small colony variants

Intracellular bacteria play important roles in the pathogenesis of
diverse diseases and constitute essential elements of chronic, recurrent,
and latent infections (Feng et al., 2022) (Fig. 2C). The intracellular
milieu is hostile, characterized by low pH, abundant reactive enzymes,
and oxidative stress. Intracellular bacteria will adjust their strategies to
cope with these harsh environments. By employing fluorescent reporter
genes to monitor individual growth rates, dormant bacteria have been
detected within intracellular infections caused by S. aureus (Garzoni and
Kelley, 2009; Peyrusson et al., 2020), Salmonella (Claudi et al., 2014),
Escherichia coli (E.coli) (Helaine et al., 2019), Mycobacterium tuberculosis
(M. tuberculosis) (Manina et al., 2015) and Legionella cherrii (L. cherrii)
(Personnic et al., 2019), exhibiting notable antibiotic tolerance over
extended durations (Wang et al., 2023). A recent finding indicates that a
minor subset of intracellular bacteria undergoes a transition to a
persistent state in response to environmental pressures imposed by host
cells. S. aureus persisters have been observed intracellularly, and their
metabolic activity is maintained accordingly by adjusting center carbon
metabolism (Peyrusson et al., 2020).

Additionally, SCVs, as a classical type of intracellular bacteria that
transition into a slow-growth state, manifest sluggish growth under
nutrient-deficient and adverse conditions. SCVs are distinguished by the
formation of diminutive colonies, reduced metabolic activity, slow
proliferation and diminished ATP levels (Kahl, 2014; Nasser et al.,
2020). SCVs and persistent bacteria commonly emerge from bacteria
recuperating from intracellular environments or stress exposure. Similar
to persisters, SCVs are capable of resuming growth post-stress cessation
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Fig. 2. Niches of persistent bacteria. Persistent bacteria are induced in harsh environments that cause the bacteria to become dormant. (A) Liquid cultures
(planktonic bacteria). When bacterial growth, here measured in CFU over time, reaches a stable period in the stationary phase, it will face a large number of bacteria,
low nutrition and various acidic anoxic environments, which will stimulate bacteria to enter a persistent state. (B) Biofilm. Biofilm interiors are typically hypoxic, low
in pH, and nutrient poor, and present a complex microenvironment including persistent bacteria. (C) Intracellular persistent bacteria and SCVs. The presence of a
large amount of dissolved oxygen, active enzymes, an acid environment and various organelles in the host cell will lead to a reduction of bacterial metabolism and
induction of persistence. SCV is a subgroup of slow-growing bacteria that go dormant during the growth phase and under harsh conditions and the same dormant
stress state as persistent bacteria under harsh conditions. (D) Granuloma and abscess. Bacteria in granulomas and abscesses are surrounded by immune cells in a
largely nutrient-poor and anaerobic state, and are surrounded by immune cells in an intricate microenvironment that imposes a variety of environmental constraints
on bacterial growth, promotes bacterial dormancy, and favors the emergence of persistent bacteria.

(Helaine et al., 2014; Loss et al., 2019; Zhou et al., 2022). Investigations
have underscored numerous metabolic resemblances between SCVs and
persistent bacteria. It is likely that persistent bacteria are indeed present
in SCVs, or alternatively, viewed from another standpoint, persistent
bacteria may coexist within SCVs as a distinct subset (Vulin et al., 2018),
but this idea needs more research and validation (Proctor et al., 2014).

2.3.4. Granuloma and abscess

Granuloma is a focal aggregate of immune cells that forms in
response to an inflammatory stimulus, such as an infectious pathogen or
a foreign body (Gengenbacher and Kaufmann, 2012; Nathan, 2016).
Numerous necrotic cells are present around the granuloma and there is a
concentration of bacteria there (Cronan, 2022). In contrast, S. aureus
abscess communities (SAC) are the result of bacteria acting on immune
cells, prompting them to gather to form a natural barrier in which the
bacteria encapsulate themselves, enabling them to survive for long pe-
riods of time within the soft tissues. Although the two niches by different
mechanisms, the layer of mostly necrotic host immune cells uninten-
tionally creates an additional protective barrier that prevents newly
recruited host immune cells from penetrating the abscess and killing the
bacteria (Fig. 2D). Under the continuous influence of host and envi-
ronmental pressures, bacteria within SAC and granulomas face scarcity
in both nutrients and oxygen, creating an environment conducive to
their persistence rather than active replication (Cronan, 2022; Masters
et al., 2022). To survive in SAC and granulomas, entry into a persistence

become strategies for bacterial survival, making the formation of
persistent bacteria in this environment (Cheng et al., 2009; Garzoni and
Kelley, 2009; Gengenbacher and Kaufmann, 2012).

3. Strategies for removing persistent bacteria

Currently, the eradication of persistent bacteria can generally be
divided into three broad strategies (Fig. 3). (i) Direct killing of persistent
bacteria. This approach involves the use of novel-generation antibiotics
and antimicrobial peptides (AMPs) as primary antibacterial agents.
Additionally, other antimicrobial agents have been developed, which we
refer to as “other antimicrobials”, including bactericidal agents that are
neither antibiotics nor AMPs. In addition to these agents, other antimi-
crobial strategies, such as metals, phages, photothermal therapy (PTT),
photodynamic therapy (PDT), nitric oxide (NO) treatment and weak
electrochemical currents are also capable of directly killing persistent
bacteria. (ii) Drug combinations. These strategies encompass the use of
traditional antibiotics in combination with other antibiotics or with non-
antibiotic agents. In the case of combinations involving antibiotics and
nonantibiotics, nonantibiotics may be utilized, for example, to awaken
or sensitize persistent bacteria, subsequently enhancing the efficacy of
the antibiotic. (iii) Inhibition of persistent bacteria formation. This
strategy aims to reduce or inhibit the formation of persistent bacteria
through pathway interference. This may be achieved by blocking bac-
terial communication or inhibiting pathways such as TA systems and



Z. Yin et al.

\ 2l

Dead bacteria

2

Phototherapies Other antimicrobials

Antibiotics O%OO AMPs J wetals
M Phages 4 Amino acids Sugars
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(pp)pGpp, which are involved in persister formation. These strategies
are not necessarily strictly independent, and it is possible that multiple
mechanisms can be combined.

3.1. Killing persistent bacteria directly

Direct killing of persistent bacteria requires rapid and intense dam-
age on the bacterial components such as cell wall, membrane, nucleic
acid and proteins etc. (Liu et al., 2023) (Fig. 4).

3.1.1. Novel-generation antibiotics and other antimicrobials

Targeting the bacterial cell membrane is an effective strategy, as it
not only disrupts the membrane directly but also alters its permeability,
facilitating the enhanced uptake of other drugs. Antibiotics like poly-
myxin B and colistin, for example, target the negatively charged lipo-
polysaccharides and phospholipids on the cytoplasmic membrane,
causing membrane disruption and lysis in persistent bacteria (Cui et al.,
2016; Mohiuddin et al., 2020; Sabnis et al., 2021). Some novel
small-molecule antimicrobials, such as the phenethylamine derivative
SPI009 (Liebens et al., 2017), peroxisome proliferator-activated recep-
tor gamma activator nTZDpa (Kim et al., 2018b), aryl-alkyl-lysines
structural compound NCK-10 (Ghosh et al., 2016), retinoic acid ana-
logs CD437 and CD1530 (Kim et al., 2018c), and the potent indigoid
NPIMA (Song et al., 2019), disrupt the phospholipid bilayer and exert a
strong osmotic effect that kills persistent bacteria. The nitrofuran
IITR06144 enhances the bactericidal activity of aminoglycosides by
disrupting membrane permeability and inducing DNA damage (Bhando
et al., 2020). Mitomycin C (Kwan et al., 2015) and cisplatin (Chowdhury
etal., 2016) have been shown to induce DNA crosslinking, leading to the
eradication of persistent bacteria.

The natural product aureomycin A (ChryA) competitively inhibits
GIlmU and DapD enzymes, targeting the synthesis of cell wall peptido-
glycan precursors and lysine in S. aureus persisters (Jia et al., 2023).
Additionally, several natural extracts have shown potential in targeting
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recalcitrant bacteria, though their mechanisms still require further
exploration. For example, two natural compounds, 4,6-dibromo-2-(2/,
4'-dibromophenoxy) phenol and 3,4,6-tribromo-2-(2',4-dibromophe-
noxy) phenol demonstrate  bactericidal  effects  against
Methicillin-resistant S. aureus (MRSA) and P. aeruginosa persistent bac-
teria (van Geelen et al., 2020). Squalamine exhibits the ability to erad-
icate persistent and VBNC bacteria of Acinetobacter baumannii
(A. baumannii) (Nicol et al., 2019).

3.1.2. AMPs (antimicrobial peptides)

AMPs are small proteins with potent antibacterial, antiviral, and
antifungal activity (Lazzaro et al., 2020). AMPs exhibit good scavenging
ability against persistent bacteria. 2D-24 is a dendrimeric peptide
composed of varying numbers of arginine and tryptophan residues. This
peptide effectively targets persistent bacteria by disrupting bacterial
membranes and potentiating the activity of antibiotics such as cipro-
floxacin, tetracycline, and carbenicillin (Bahar et al., 2015b). Similarly,
a penetrating peptide containing different arginine and tryptophan in
the AMP framework based on the 1,3,5-triazine structure, along with its
derivative TN-5, has proven effective in eliminating persistent E. coli
(Chen et al, 2011; Bahar et al, 2015a). Additionally, the
lysine-containing AMP ZY4, reported by Mwangi et al., demonstrates
bactericidal activity against biofilms and persistent A. baumannii by
permeabilizing bacterial membranes (Mwangi et al, 2019). An
imidazole-cation AMP has been designed for the targeted removal of
persistent MRSA and biofilm (Basak et al., 2017). Liu et al. developed
various host defense peptides and peptide-like polymers, utilizing
ring-opening polymerization, for the effective removal of persistent
MRSA (Zhou et al., 2020; Xie et al., 2021).

The acyldepsipeptide ADEP4 activates bacterial caseinolytic pepti-
dase P (ClpP), resulting in nonspecific protease activity that targets over
400 of intracellular proteins, thereby killing persistent bacteria. When
combined with gentamicin, it demonstrates potent activity against
persistent bacteria, making it an effective agent for eradicating persis-
tent bacterial infections (Conlon et al., 2013). Lassomycin is a cyclic
peptide synthesized via ribosomal pathways that exhibits activity
against persistent M. tuberculosis by targeting the ATP-dependent pro-
tease ClpClP1P2 (Gavrish et al, 2014). Furthermore, a
sequence-specific pentamer, known as TM5, inhibits cytokine produc-
tion induced by Gram-negative bacterial lipopolysaccharides, demon-
strating efficacy against planktonic persistent bacteria and exerting
bactericidal effects on biofilms formed by both Gram-negative and
Gram-positive bacteria (Lin et al., 2022).

Direct conjugation of commonly used antibiotics with antimicrobial
peptides has emerged as a promising strategy in drug development. For
instance, Mohamed et al. (2017) synthesized a kanamycin-peptide
conjugate (P14KanS) by coupling kanamycin with an antimicrobial
peptide (P14LRR). Mechanistic studies revealed that P14KanS exerts its
antimicrobial action through selective disruption of the bacterial
membrane (2017). Similarly, conjugates of vancomycin with innate
defense regulator (V-IDR1018) (Etayash et al., 2021) and
vancomycin-D-arginine (V-r8) (Antonoplis et al., 2018) have been
developed to clear biofilms of MRSA and persistent bacteria, respec-
tively, by inducing cytokine production and enhancing transporter ac-
tivity. These conjugates exhibit higher clearance efficiency compared to
vancomycin alone.

3.1.3. Phage

One of the key advantages of phage therapy over broad-spectrum
antibiotics is its high specificity for target bacterial pathogens, without
causing adverse effects on the host or its symbiotic microbiota, thereby
minimizing secondary impacts (Sarker et al., 2016). Phages exert their
bactericidal action by ultimately lysing bacteria (Pacios et al., 2020).
Phage-derived enzymes, such as Art-175 (Briers et al., 2014), LysH5
(Gutierrez et al., 2014), CF-301(Schuch et al., 2013) CHAP(K) (Fenton
et al., 2013), and PlyC (Shen et al., 2013) have demonstrated
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Fig. 4. Strategies for direct removal of persistent bacteria. (A) Schematic diagram illustrating the direct killing of persistent bacteria. (B) Classification by
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Destroying cell wall. (iii) Inhibiting transcription/replication. (iv) Inhibiting protein synthesis. (v) Generating ROS.

effectiveness in inhibiting and killing persistent S. aureus, along with
potent anti-biofilm activity. The S. aureus-specific phage Sb-1 can
degrade the MRSA polysaccharide matrix and target persistent bacteria,
making it suitable for treating biofilm-related infections (Tkhilaishvili
et al., 2018). Recently, phage-antibiotic combination therapy has been
proposed as a strategy to eradicate persistent bacteria and eliminate
biofilms on medical devices, prosthetic joints, etc. (Kebriaei et al., 2020;
Fedorov et al., 2023; Osman et al., 2023). For example, Paride, a newly
isolated P. aeruginosa phage, can directly replicate and induce lysis of
persisters. When combined with meropenem, Paride can eradicate
persistent bacteria in vitro and reduce bacterial infection in mouse tissue
(Maffei et al., 2024), demonstrating strong targeting and scavenging
capabilities.

3.1.4. Metals

Metals offer a promising strategy against bacteria, including biofilms
and persisters by directly damaging membrane surfaces, altering mem-
brane permeability, and disrupting DNA and iron metabolism
(Basavegowda and Baek, 2021; Han et al., 2022). Copper enhances the
killing of persistent bacteria under anaerobic conditions by disrupting
proteins involved in bacterial respiration. The primary cause of copper
toxicity is the disruption of Fe-S protein clusters, an oxygen-independent
process (Moreira Martins et al., 2020). Magnesium hydroxide nano-
particles, due to their small size, significantly kill persistent E.coli
(Nakamura et al., 2021).Caffeine-coated gold nanoparticles exhibit
multifaceted characteristics, including the ability to inhibit biofilm

formation, disperse mature biofilms, and eradicate S. aureus,
L. monocytogene, P. aeruginosa and E. coli persisters (Khan et al., 2021).
Gold nanoclusters coated with adenosine triphosphate (AuNC@ATP)
kill persistent bacteria by exploiting their low metabolic activity and
increasing membrane permeability (Bekale et al., 2023).

3.1.5. Other direct killing strategies

Emerging physical strategies, including phototherapies (PDT and
PTT), NO treatment and week electrochemical currents, show consid-
erable promise in eradicating persistent bacteria. In PTT therapy, blue
light has been shown to disrupt proton flux across the inner membrane,
thereby affecting the viability of persistent E.coli (Abana et al., 2017).
Simultaneously, Xu et al. developed a novel multimodal antibacterial
platform integrating both PDT and PTT, which not only eradicates
pathogenic bacteria but also visualize ROS generation and promotes
wound healing (He et al., 2024b). The NO treatment strategy effectively
targets Type I persistent bacteria during the stationary phase by
reducing protein and RNA degradation in these persisters (Orman and
Brynildsen, 2016). Week electrochemical currents have been shown to
reduce persistent bacteria by increasing ROS production, although the
exact mechanisms require further investigation (Niepa et al., 2012;
Schmidt-Malan et al., 2015; Voegele et al., 2015). Similarly, sonody-
namic and magnetic therapies (Cheeseman et al., 2020; Wu et al., 2023;
He et al., 2024a), currently under development, offer precise and effi-
cient alternatives, further expanding the growing arsenal of advanced
modalities for tackling persistent bacterial infections.



Z. Yin et al.
3.2. Drug combination

Persistent bacteria pose a significant challenge to the effectiveness of
single antibiotics, which is why strategies for combined clearance of
persistent bacteria through multiple routes have emerged. These stra-
tegies include the combinations of antibiotics and nonantibiotics, as well
as combinations of conventional antibiotics. Such approaches involve
multiple mechanisms of action, which may include the use of an auxil-
iary agent that lacks intrinsic antimicrobial activity but enhances anti-
biotic efficacy, or the combination of multiple antibiotics with
synergistic modes of action. A key consideration when employing
combination strategies is whether they lead to beneficial synergistic
effects or potential antagonistic effects that could undermine the effi-
cacy of the antibiotics. Harnessing the synergistic potential of these
combinations is crucial for achieving potent eradication of persistent
bacteria. Furthermore, combining different treatments can also help
reduce the development of antibiotic resistance (Fig. 5A).

3.2.1. Combinations of conventional antibiotics

Combining multiple antibiotics provides an effective approach for
eliminating persistent bacteria (Chung and Ko, 2019). The available
antibiotics target various cellular components, including but not limited
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to: disrupting cell wall integrity (e.g., p-lactams and glycopeptides),
disrupting the cell membrane (lipopeptides), inhibiting protein synthe-
sis (chloramphenicol, macrolides, tetracyclines), blocking transcription
(rifampicin), and impeding DNA synthesis (fluoroquinolones) (131)
(Fig. 5B).

Doxycycline, combined with daptomycin or ceftriaxone, demon-
strates efficacy in treating persistent Borrelia burgdorferi (B. burgdorferi)
bacteria in Lyme disease (Defraine et al., 2018). Similarly, daptomycin
combined with tobramycin (Lechner et al., 2012) or gentamicin (Baltch
et al., 2008) shows killing efficacy against S. aureus persisters. Another
example includes tobramycin combined with colistin or ciprofloxacin,
which can eradicate persistent bacteria during both exponential and
stationary phases of A. baumannii growth. Down-regulation of genes
encoding universal stress proteins and efflux pumps in response to
tobramycin and colistin reduces antibiotic efflux, thereby enhancing
bacterial clearance (Kashyap et al., 2021). Colistin increases membrane
permeability, promotes ROS production, and facilitates the entry of
antibiotics, such as amikacin (Chung and Ko, 2019), tobramycin
(Kashyap et al., 2021) gentamicin (Cui et al., 2016; Zheng et al., 2020)
and ofloxacin (Cui et al., 2016; Zheng et al., 2020). Combining pheno-
thiazines with ofloxacin disrupts persistent bacteria by inhibiting energy
metabolism and proton gradient maintenance (Mohiuddin et al., 2022).
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3.2.2. Combinations of antibiotics and nonantibiotics

Nonantibiotics that modify the metabolism of persistent bacteria,
such as altering glycolysis, boosting the tricarboxylic acid cycle (TCA),
and up-regulating various other pathways (e.g., ROS and reactive ni-
trogen species), are used as adjuncts to enhance antibiotic killing. These
nonantibiotics include amino acids, sugars and other metabolites.
Additionally, nonantibiotics that alter the external environment can
promote the awakening of persistent bacteria. These agents strengthen
the bacterial PMF, facilitate antibiotic internalization, and enhance
bacterial susceptibility to antibiotics (Meylan et al., 2017; Su et al.,
2018; Liu et al., 2020a; MacLean et al., 2023) (Fig. 5B).

For instance, combining sugars such as mannitol, fructose, and
glucose with the aminoglycoside kanamycin, significantly reduces E. coli
and S. aureus persisters by altering bacterial metabolism, increasing
PMF, and enhancing aminoglycosides uptake (Allison et al., 2011). The
combination of the antibiotic-antimicrobial peptide Nisin was effective
in reducing the formation of Listeria monocytogenes (L. monocytogenes)
persistent (Narimisa et al., 2021), while combining Nisin with ampicillin
successfully killed Salmonella persisters under mannose conditions
(Rishi et al., 2018). Amino acids, similar to sugars, also regulate bac-
terial metabolism (Verstraete et al., 2022). Proline has been reported to
reawaken persistent P. aeruginosa, while exogenous alanine can promote
the resensitization of E. coli to kanamycin (Peng et al., 2015; Zhang
etal., 2019). Exposure to acidic pH triggers persistence, but the addition
of basic amino acids, such as L-arginine, enhances PMF and sensitizes
bacteria to kanamycin by modifying the membrane pH gradient
(Lebeaux et al., 2014; Verstraete et al., 2022). Similarly, L-serine (Duan
et al., 2016), L-alanine, and cysteine (Liu et al., 2020b; Yamasaki et al.,
2020; Zhen et al., 2020) enhance the efficacy of fluoroquinolones
against E. coli and M. tuberculosis by boosting endogenous ROS pro-
duction. In addition, exogenous adenosine can synergize with antibiotics
by altering nucleotide metabolic pathways and reducing (pp)pGpp
accumulation, as well as promoting ATP synthesis to reverse bacterial
persistence (Kitzenberg et al., 2022; Li et al., 2023).

Beyond metabolism enhancement via metabolites, single chemical
compounds like C10 (Kim et al., 2011) and the fatty acid signaling
molecule cis-2-decenoic acid(Marques et al., 2014) have been shown to
transition persistent P. aeruginosa and E. coli from a dormant state to a
metabolically active state. The combination of nTZDpa and amino-
glycosides effectively kills persistent bacteria, while dimercaptan com-
bined with gentamicin eradicates S. aureus in vitro and significantly
reducing bacterial load in a mouse model of chronic MRSA infection
(Kim et al., 2019). Additionally, Zhao et al. suggested that freezing
techniques enhance aminoglycoside uptake through the mechanosensi-
tive ion channel MscL, independent of PMF (Zhao et al., 2020). Simi-
larly, hypoionic shock also mediated by mechanosensitive ion channels,
facilitates aminoglycoside influx to eliminate persistent bacteria
(Jiafeng et al., 2015).

In addition, drug delivery systems (DDSs) enable precise delivery of
antibiotics, increasing antibiotic internalization and altering the
external environment of the bacteria, thereby enhancing antibiotic ef-
ficacy in removing persistent bacteria (Ashique et al., 2021; Cai et al.,
2022). For example, a maltohexaose-modified catalase-gallium nano-
system awakens dormant P. aeruginosa biofilms by reconciling the oxy-
gen gradient, boosting metabolism, and increasing nutritional iron
demand (Jian He a, 2024). Gold nanoparticles with NO photothermal
release also exhibit synergistic biofilm-clearing ability (Tang et al.,
2021). Additionally, gluconic acid-chitosan nanoparticles show anti-
bacterial activity against persistent bacteria and biofilms (Khan et al.,
2020a), while poly(amino acid)-based nanoparticles specifically target
dormant intracellular bacteria, offering a novel approach for intracel-
lular bacterial elimination (Feng et al., 2022)

3.3. Inhibiting the formation of persistent bacteria

The formation of persistent bacteria is regulated by various signals,
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and inhibiting their generation by disrupting specific pathways has
become a viable strategy. Approaches such as blocking QS, inhibiting
the expression of (pp)pGpp, and targeting toxin-antitoxin (TA) systems
have been developed (Fig. 6).

Relacin, a novel antibacterial agent, inhibits (pp)pGpp synthesis
mediated by RelA, disrupting the transition of several Gram-positive
bacteria into a stable growth state and leading to bacterial death, thus
inhibiting the generation of persistent bacteria (Wexselblatt et al.,
2012). TA systems play a central role in persistence, making them
attractive drug targets. Inhibiting toxins can prevent growth arrest,
while promoting their activity may drive persisters out of dormancy. For
example, HipA, the first identified toxin linked to E. coli persistence, can
be inhibited by compounds identified through structure-based virtual
screening, significantly reducing persistence (Li et al., 2016). The Lon
protease activates the TA system by degrading antitoxins. Inhibition of
Lon protease activity can prevent toxin release, thereby blocking TA
system-mediated entry of bacteria into the persister state (Harms et al.,
2016; Michiels et al., 2016). Diosmin and nafcillin have been identified
as potential inhibitors of Lon protease, capable of effectively down-
grading the expression of type II TA system genes, thus preventing the
formation of persisters (Narimisa et al., 2024). Similarly, the mazEF TA
system is crucial for persistence; its overexpression induces persister
formation, but direct interaction with rifampicin can inhibit this process
(Alexander et al., 2020). In addition , disrupting folate metabolism can
inhibit the generation of persistent bacteria (Morgan et al., 2018).

Bacteria are not isolated entities; they communicate via QS signaling
molecules, making QS pathways effective targets for combating persis-
tent bacteria in biofilms (Moker et al., 2010; Leung and Levesque, 2012).
Strategies include degrading QS signaling molecules, inhibiting their
production pathways, blocking receptor interactions, disrupting mem-
brane transport, or capturing signaling molecules (Khan et al., 2020b).
For example, BF8 is a QS inhibitor of E. coli, which can sensitize bacteria
to ofloxacin by disrupting connections between biofilms if added
exogenously(Pan et al., 2013). Similarly, QS-regulated phenol-soluble
modulins decrease persistent bacteria number in S. aureus (Bojer, 2018).

4. Concluding remarks

In this review, we provided the current definition of bacterial
persistence and summarized the mechanisms behind persisters forma-
tion, as well as the various niches of bacterial persistence encountered in
clinical practice. We have also outlined comprehensively strategies for
eradicating persister bacteria, including direct killing via novel-
generation antibiotics, AMPs, other antimicrobial agents and strate-
gies, drug combinations of conventional antibiotics and/or non-
antibiotics, and inhibition of persister formation. These insights
contribute to a broader understanding of persister formation and elim-
ination, facilitating a deeper comprehension of their underlying mech-
anisms and potential therapeutic strategies.

However, many unresolved questions regarding the development
and management of persister bacteria remain, highlighting the need for
further investigation.

First, there is a lack of effective detection methods and treatment
evaluations for persistent bacteria in infected tissues. Persistent bacteria
often exist in traces across various tissue types and depths, making on-
site, trace-level detection challenging. This gap significantly hampers
the ability to assess drug efficacy and monitor patient recovery. Addi-
tionally, although several in vitro antibiotic induction models have been
developed, their use has been controversial due to the considerable
variability in the metabolic responses of persistent bacteria induced by
different antibiotics. Constructing in vivo models of persistent bacterial
infections is complicated by factors such as the deep penetration of
persisters, the host microenvironment and immune response. Estab-
lishing reliable mechanisms for the induction, detection, and evaluation
of persistent bacteria will be critical in advancing efforts to eradicate
bacterial infections.
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bacterial communication.

Second, the effect of the persister niches on drug efficacy has been
overlooked. As mentioned above, persistent bacteria typically reside in
deep tissues within a complex microenvironment, requiring drugs to
penetrate tissue barriers and reach bacterial loci. This presents a sig-
nificant challenge for bactericidal efficacy, as the ability of a drug may
vary substantially when treating persisters in different niches. Further-
more, the microenvironment strongly influences the state of persistent
bacteria. For example, hypoxic conditions may shift persistent bacteria
from aerobic respiration to fermentation, which may drastically alter
their susceptibility to different drugs. These factors highlight the need
for further research on the impact of persister niches on the effectiveness
of therapies targeting persister bacteria.
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